915 lines
27 KiB
JavaScript
915 lines
27 KiB
JavaScript
|
(function (global, factory) {
|
||
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
||
|
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
||
|
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {}));
|
||
|
})(this, (function (exports) { 'use strict';
|
||
|
|
||
|
const epsilon = 1.1102230246251565e-16;
|
||
|
const splitter = 134217729;
|
||
|
const resulterrbound = (3 + 8 * epsilon) * epsilon;
|
||
|
|
||
|
// fast_expansion_sum_zeroelim routine from oritinal code
|
||
|
function sum(elen, e, flen, f, h) {
|
||
|
let Q, Qnew, hh, bvirt;
|
||
|
let enow = e[0];
|
||
|
let fnow = f[0];
|
||
|
let eindex = 0;
|
||
|
let findex = 0;
|
||
|
if ((fnow > enow) === (fnow > -enow)) {
|
||
|
Q = enow;
|
||
|
enow = e[++eindex];
|
||
|
} else {
|
||
|
Q = fnow;
|
||
|
fnow = f[++findex];
|
||
|
}
|
||
|
let hindex = 0;
|
||
|
if (eindex < elen && findex < flen) {
|
||
|
if ((fnow > enow) === (fnow > -enow)) {
|
||
|
Qnew = enow + Q;
|
||
|
hh = Q - (Qnew - enow);
|
||
|
enow = e[++eindex];
|
||
|
} else {
|
||
|
Qnew = fnow + Q;
|
||
|
hh = Q - (Qnew - fnow);
|
||
|
fnow = f[++findex];
|
||
|
}
|
||
|
Q = Qnew;
|
||
|
if (hh !== 0) {
|
||
|
h[hindex++] = hh;
|
||
|
}
|
||
|
while (eindex < elen && findex < flen) {
|
||
|
if ((fnow > enow) === (fnow > -enow)) {
|
||
|
Qnew = Q + enow;
|
||
|
bvirt = Qnew - Q;
|
||
|
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||
|
enow = e[++eindex];
|
||
|
} else {
|
||
|
Qnew = Q + fnow;
|
||
|
bvirt = Qnew - Q;
|
||
|
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||
|
fnow = f[++findex];
|
||
|
}
|
||
|
Q = Qnew;
|
||
|
if (hh !== 0) {
|
||
|
h[hindex++] = hh;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
while (eindex < elen) {
|
||
|
Qnew = Q + enow;
|
||
|
bvirt = Qnew - Q;
|
||
|
hh = Q - (Qnew - bvirt) + (enow - bvirt);
|
||
|
enow = e[++eindex];
|
||
|
Q = Qnew;
|
||
|
if (hh !== 0) {
|
||
|
h[hindex++] = hh;
|
||
|
}
|
||
|
}
|
||
|
while (findex < flen) {
|
||
|
Qnew = Q + fnow;
|
||
|
bvirt = Qnew - Q;
|
||
|
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
|
||
|
fnow = f[++findex];
|
||
|
Q = Qnew;
|
||
|
if (hh !== 0) {
|
||
|
h[hindex++] = hh;
|
||
|
}
|
||
|
}
|
||
|
if (Q !== 0 || hindex === 0) {
|
||
|
h[hindex++] = Q;
|
||
|
}
|
||
|
return hindex;
|
||
|
}
|
||
|
|
||
|
function sum_three(alen, a, blen, b, clen, c, tmp, out) {
|
||
|
return sum(sum(alen, a, blen, b, tmp), tmp, clen, c, out);
|
||
|
}
|
||
|
|
||
|
// scale_expansion_zeroelim routine from oritinal code
|
||
|
function scale(elen, e, b, h) {
|
||
|
let Q, sum, hh, product1, product0;
|
||
|
let bvirt, c, ahi, alo, bhi, blo;
|
||
|
|
||
|
c = splitter * b;
|
||
|
bhi = c - (c - b);
|
||
|
blo = b - bhi;
|
||
|
let enow = e[0];
|
||
|
Q = enow * b;
|
||
|
c = splitter * enow;
|
||
|
ahi = c - (c - enow);
|
||
|
alo = enow - ahi;
|
||
|
hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
let hindex = 0;
|
||
|
if (hh !== 0) {
|
||
|
h[hindex++] = hh;
|
||
|
}
|
||
|
for (let i = 1; i < elen; i++) {
|
||
|
enow = e[i];
|
||
|
product1 = enow * b;
|
||
|
c = splitter * enow;
|
||
|
ahi = c - (c - enow);
|
||
|
alo = enow - ahi;
|
||
|
product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
sum = Q + product0;
|
||
|
bvirt = sum - Q;
|
||
|
hh = Q - (sum - bvirt) + (product0 - bvirt);
|
||
|
if (hh !== 0) {
|
||
|
h[hindex++] = hh;
|
||
|
}
|
||
|
Q = product1 + sum;
|
||
|
hh = sum - (Q - product1);
|
||
|
if (hh !== 0) {
|
||
|
h[hindex++] = hh;
|
||
|
}
|
||
|
}
|
||
|
if (Q !== 0 || hindex === 0) {
|
||
|
h[hindex++] = Q;
|
||
|
}
|
||
|
return hindex;
|
||
|
}
|
||
|
|
||
|
function negate(elen, e) {
|
||
|
for (let i = 0; i < elen; i++) e[i] = -e[i];
|
||
|
return elen;
|
||
|
}
|
||
|
|
||
|
function estimate(elen, e) {
|
||
|
let Q = e[0];
|
||
|
for (let i = 1; i < elen; i++) Q += e[i];
|
||
|
return Q;
|
||
|
}
|
||
|
|
||
|
function vec(n) {
|
||
|
return new Float64Array(n);
|
||
|
}
|
||
|
|
||
|
const isperrboundA = (16 + 224 * epsilon) * epsilon;
|
||
|
const isperrboundB = (5 + 72 * epsilon) * epsilon;
|
||
|
const isperrboundC = (71 + 1408 * epsilon) * epsilon * epsilon;
|
||
|
|
||
|
const ab = vec(4);
|
||
|
const bc = vec(4);
|
||
|
const cd = vec(4);
|
||
|
const de = vec(4);
|
||
|
const ea = vec(4);
|
||
|
const ac = vec(4);
|
||
|
const bd = vec(4);
|
||
|
const ce = vec(4);
|
||
|
const da = vec(4);
|
||
|
const eb = vec(4);
|
||
|
|
||
|
const abc = vec(24);
|
||
|
const bcd = vec(24);
|
||
|
const cde = vec(24);
|
||
|
const dea = vec(24);
|
||
|
const eab = vec(24);
|
||
|
const abd = vec(24);
|
||
|
const bce = vec(24);
|
||
|
const cda = vec(24);
|
||
|
const deb = vec(24);
|
||
|
const eac = vec(24);
|
||
|
|
||
|
const adet = vec(1152);
|
||
|
const bdet = vec(1152);
|
||
|
const cdet = vec(1152);
|
||
|
const ddet = vec(1152);
|
||
|
const edet = vec(1152);
|
||
|
const abdet = vec(2304);
|
||
|
const cddet = vec(2304);
|
||
|
const cdedet = vec(3456);
|
||
|
const deter = vec(5760);
|
||
|
|
||
|
const _8 = vec(8);
|
||
|
const _8b = vec(8);
|
||
|
const _8c = vec(8);
|
||
|
const _16 = vec(16);
|
||
|
const _24 = vec(24);
|
||
|
const _48 = vec(48);
|
||
|
const _48b = vec(48);
|
||
|
const _96 = vec(96);
|
||
|
const _192 = vec(192);
|
||
|
const _384x = vec(384);
|
||
|
const _384y = vec(384);
|
||
|
const _384z = vec(384);
|
||
|
const _768 = vec(768);
|
||
|
|
||
|
function sum_three_scale(a, b, c, az, bz, cz, out) {
|
||
|
return sum_three(
|
||
|
scale(4, a, az, _8), _8,
|
||
|
scale(4, b, bz, _8b), _8b,
|
||
|
scale(4, c, cz, _8c), _8c, _16, out);
|
||
|
}
|
||
|
|
||
|
function liftexact(alen, a, blen, b, clen, c, dlen, d, x, y, z, out) {
|
||
|
const len = sum(
|
||
|
sum(alen, a, blen, b, _48), _48,
|
||
|
negate(sum(clen, c, dlen, d, _48b), _48b), _48b, _96);
|
||
|
|
||
|
return sum_three(
|
||
|
scale(scale(len, _96, x, _192), _192, x, _384x), _384x,
|
||
|
scale(scale(len, _96, y, _192), _192, y, _384y), _384y,
|
||
|
scale(scale(len, _96, z, _192), _192, z, _384z), _384z, _768, out);
|
||
|
}
|
||
|
|
||
|
function insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
|
||
|
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
|
||
|
|
||
|
s1 = ax * by;
|
||
|
c = splitter * ax;
|
||
|
ahi = c - (c - ax);
|
||
|
alo = ax - ahi;
|
||
|
c = splitter * by;
|
||
|
bhi = c - (c - by);
|
||
|
blo = by - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = bx * ay;
|
||
|
c = splitter * bx;
|
||
|
ahi = c - (c - bx);
|
||
|
alo = bx - ahi;
|
||
|
c = splitter * ay;
|
||
|
bhi = c - (c - ay);
|
||
|
blo = ay - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
ab[3] = u3;
|
||
|
s1 = bx * cy;
|
||
|
c = splitter * bx;
|
||
|
ahi = c - (c - bx);
|
||
|
alo = bx - ahi;
|
||
|
c = splitter * cy;
|
||
|
bhi = c - (c - cy);
|
||
|
blo = cy - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = cx * by;
|
||
|
c = splitter * cx;
|
||
|
ahi = c - (c - cx);
|
||
|
alo = cx - ahi;
|
||
|
c = splitter * by;
|
||
|
bhi = c - (c - by);
|
||
|
blo = by - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
bc[3] = u3;
|
||
|
s1 = cx * dy;
|
||
|
c = splitter * cx;
|
||
|
ahi = c - (c - cx);
|
||
|
alo = cx - ahi;
|
||
|
c = splitter * dy;
|
||
|
bhi = c - (c - dy);
|
||
|
blo = dy - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = dx * cy;
|
||
|
c = splitter * dx;
|
||
|
ahi = c - (c - dx);
|
||
|
alo = dx - ahi;
|
||
|
c = splitter * cy;
|
||
|
bhi = c - (c - cy);
|
||
|
blo = cy - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
cd[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
cd[3] = u3;
|
||
|
s1 = dx * ey;
|
||
|
c = splitter * dx;
|
||
|
ahi = c - (c - dx);
|
||
|
alo = dx - ahi;
|
||
|
c = splitter * ey;
|
||
|
bhi = c - (c - ey);
|
||
|
blo = ey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = ex * dy;
|
||
|
c = splitter * ex;
|
||
|
ahi = c - (c - ex);
|
||
|
alo = ex - ahi;
|
||
|
c = splitter * dy;
|
||
|
bhi = c - (c - dy);
|
||
|
blo = dy - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
de[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
de[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
de[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
de[3] = u3;
|
||
|
s1 = ex * ay;
|
||
|
c = splitter * ex;
|
||
|
ahi = c - (c - ex);
|
||
|
alo = ex - ahi;
|
||
|
c = splitter * ay;
|
||
|
bhi = c - (c - ay);
|
||
|
blo = ay - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = ax * ey;
|
||
|
c = splitter * ax;
|
||
|
ahi = c - (c - ax);
|
||
|
alo = ax - ahi;
|
||
|
c = splitter * ey;
|
||
|
bhi = c - (c - ey);
|
||
|
blo = ey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
ea[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
ea[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
ea[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
ea[3] = u3;
|
||
|
s1 = ax * cy;
|
||
|
c = splitter * ax;
|
||
|
ahi = c - (c - ax);
|
||
|
alo = ax - ahi;
|
||
|
c = splitter * cy;
|
||
|
bhi = c - (c - cy);
|
||
|
blo = cy - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = cx * ay;
|
||
|
c = splitter * cx;
|
||
|
ahi = c - (c - cx);
|
||
|
alo = cx - ahi;
|
||
|
c = splitter * ay;
|
||
|
bhi = c - (c - ay);
|
||
|
blo = ay - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
ac[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
ac[3] = u3;
|
||
|
s1 = bx * dy;
|
||
|
c = splitter * bx;
|
||
|
ahi = c - (c - bx);
|
||
|
alo = bx - ahi;
|
||
|
c = splitter * dy;
|
||
|
bhi = c - (c - dy);
|
||
|
blo = dy - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = dx * by;
|
||
|
c = splitter * dx;
|
||
|
ahi = c - (c - dx);
|
||
|
alo = dx - ahi;
|
||
|
c = splitter * by;
|
||
|
bhi = c - (c - by);
|
||
|
blo = by - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
bd[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
bd[3] = u3;
|
||
|
s1 = cx * ey;
|
||
|
c = splitter * cx;
|
||
|
ahi = c - (c - cx);
|
||
|
alo = cx - ahi;
|
||
|
c = splitter * ey;
|
||
|
bhi = c - (c - ey);
|
||
|
blo = ey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = ex * cy;
|
||
|
c = splitter * ex;
|
||
|
ahi = c - (c - ex);
|
||
|
alo = ex - ahi;
|
||
|
c = splitter * cy;
|
||
|
bhi = c - (c - cy);
|
||
|
blo = cy - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
ce[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
ce[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
ce[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
ce[3] = u3;
|
||
|
s1 = dx * ay;
|
||
|
c = splitter * dx;
|
||
|
ahi = c - (c - dx);
|
||
|
alo = dx - ahi;
|
||
|
c = splitter * ay;
|
||
|
bhi = c - (c - ay);
|
||
|
blo = ay - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = ax * dy;
|
||
|
c = splitter * ax;
|
||
|
ahi = c - (c - ax);
|
||
|
alo = ax - ahi;
|
||
|
c = splitter * dy;
|
||
|
bhi = c - (c - dy);
|
||
|
blo = dy - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
da[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
da[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
da[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
da[3] = u3;
|
||
|
s1 = ex * by;
|
||
|
c = splitter * ex;
|
||
|
ahi = c - (c - ex);
|
||
|
alo = ex - ahi;
|
||
|
c = splitter * by;
|
||
|
bhi = c - (c - by);
|
||
|
blo = by - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = bx * ey;
|
||
|
c = splitter * bx;
|
||
|
ahi = c - (c - bx);
|
||
|
alo = bx - ahi;
|
||
|
c = splitter * ey;
|
||
|
bhi = c - (c - ey);
|
||
|
blo = ey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
eb[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
eb[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
u3 = _j + _i;
|
||
|
bvirt = u3 - _j;
|
||
|
eb[2] = _j - (u3 - bvirt) + (_i - bvirt);
|
||
|
eb[3] = u3;
|
||
|
|
||
|
const abclen = sum_three_scale(ab, bc, ac, cz, az, -bz, abc);
|
||
|
const bcdlen = sum_three_scale(bc, cd, bd, dz, bz, -cz, bcd);
|
||
|
const cdelen = sum_three_scale(cd, de, ce, ez, cz, -dz, cde);
|
||
|
const dealen = sum_three_scale(de, ea, da, az, dz, -ez, dea);
|
||
|
const eablen = sum_three_scale(ea, ab, eb, bz, ez, -az, eab);
|
||
|
const abdlen = sum_three_scale(ab, bd, da, dz, az, bz, abd);
|
||
|
const bcelen = sum_three_scale(bc, ce, eb, ez, bz, cz, bce);
|
||
|
const cdalen = sum_three_scale(cd, da, ac, az, cz, dz, cda);
|
||
|
const deblen = sum_three_scale(de, eb, bd, bz, dz, ez, deb);
|
||
|
const eaclen = sum_three_scale(ea, ac, ce, cz, ez, az, eac);
|
||
|
|
||
|
const deterlen = sum_three(
|
||
|
liftexact(cdelen, cde, bcelen, bce, deblen, deb, bcdlen, bcd, ax, ay, az, adet), adet,
|
||
|
liftexact(dealen, dea, cdalen, cda, eaclen, eac, cdelen, cde, bx, by, bz, bdet), bdet,
|
||
|
sum_three(
|
||
|
liftexact(eablen, eab, deblen, deb, abdlen, abd, dealen, dea, cx, cy, cz, cdet), cdet,
|
||
|
liftexact(abclen, abc, eaclen, eac, bcelen, bce, eablen, eab, dx, dy, dz, ddet), ddet,
|
||
|
liftexact(bcdlen, bcd, abdlen, abd, cdalen, cda, abclen, abc, ex, ey, ez, edet), edet, cddet, cdedet), cdedet, abdet, deter);
|
||
|
|
||
|
return deter[deterlen - 1];
|
||
|
}
|
||
|
|
||
|
const xdet = vec(96);
|
||
|
const ydet = vec(96);
|
||
|
const zdet = vec(96);
|
||
|
const fin = vec(1152);
|
||
|
|
||
|
function liftadapt(a, b, c, az, bz, cz, x, y, z, out) {
|
||
|
const len = sum_three_scale(a, b, c, az, bz, cz, _24);
|
||
|
return sum_three(
|
||
|
scale(scale(len, _24, x, _48), _48, x, xdet), xdet,
|
||
|
scale(scale(len, _24, y, _48), _48, y, ydet), ydet,
|
||
|
scale(scale(len, _24, z, _48), _48, z, zdet), zdet, _192, out);
|
||
|
}
|
||
|
|
||
|
function insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent) {
|
||
|
let ab3, bc3, cd3, da3, ac3, bd3;
|
||
|
|
||
|
let aextail, bextail, cextail, dextail;
|
||
|
let aeytail, beytail, ceytail, deytail;
|
||
|
let aeztail, beztail, ceztail, deztail;
|
||
|
|
||
|
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0;
|
||
|
|
||
|
const aex = ax - ex;
|
||
|
const bex = bx - ex;
|
||
|
const cex = cx - ex;
|
||
|
const dex = dx - ex;
|
||
|
const aey = ay - ey;
|
||
|
const bey = by - ey;
|
||
|
const cey = cy - ey;
|
||
|
const dey = dy - ey;
|
||
|
const aez = az - ez;
|
||
|
const bez = bz - ez;
|
||
|
const cez = cz - ez;
|
||
|
const dez = dz - ez;
|
||
|
|
||
|
s1 = aex * bey;
|
||
|
c = splitter * aex;
|
||
|
ahi = c - (c - aex);
|
||
|
alo = aex - ahi;
|
||
|
c = splitter * bey;
|
||
|
bhi = c - (c - bey);
|
||
|
blo = bey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = bex * aey;
|
||
|
c = splitter * bex;
|
||
|
ahi = c - (c - bex);
|
||
|
alo = bex - ahi;
|
||
|
c = splitter * aey;
|
||
|
bhi = c - (c - aey);
|
||
|
blo = aey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
ab3 = _j + _i;
|
||
|
bvirt = ab3 - _j;
|
||
|
ab[2] = _j - (ab3 - bvirt) + (_i - bvirt);
|
||
|
ab[3] = ab3;
|
||
|
s1 = bex * cey;
|
||
|
c = splitter * bex;
|
||
|
ahi = c - (c - bex);
|
||
|
alo = bex - ahi;
|
||
|
c = splitter * cey;
|
||
|
bhi = c - (c - cey);
|
||
|
blo = cey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = cex * bey;
|
||
|
c = splitter * cex;
|
||
|
ahi = c - (c - cex);
|
||
|
alo = cex - ahi;
|
||
|
c = splitter * bey;
|
||
|
bhi = c - (c - bey);
|
||
|
blo = bey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
bc3 = _j + _i;
|
||
|
bvirt = bc3 - _j;
|
||
|
bc[2] = _j - (bc3 - bvirt) + (_i - bvirt);
|
||
|
bc[3] = bc3;
|
||
|
s1 = cex * dey;
|
||
|
c = splitter * cex;
|
||
|
ahi = c - (c - cex);
|
||
|
alo = cex - ahi;
|
||
|
c = splitter * dey;
|
||
|
bhi = c - (c - dey);
|
||
|
blo = dey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = dex * cey;
|
||
|
c = splitter * dex;
|
||
|
ahi = c - (c - dex);
|
||
|
alo = dex - ahi;
|
||
|
c = splitter * cey;
|
||
|
bhi = c - (c - cey);
|
||
|
blo = cey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
cd3 = _j + _i;
|
||
|
bvirt = cd3 - _j;
|
||
|
cd[2] = _j - (cd3 - bvirt) + (_i - bvirt);
|
||
|
cd[3] = cd3;
|
||
|
s1 = dex * aey;
|
||
|
c = splitter * dex;
|
||
|
ahi = c - (c - dex);
|
||
|
alo = dex - ahi;
|
||
|
c = splitter * aey;
|
||
|
bhi = c - (c - aey);
|
||
|
blo = aey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = aex * dey;
|
||
|
c = splitter * aex;
|
||
|
ahi = c - (c - aex);
|
||
|
alo = aex - ahi;
|
||
|
c = splitter * dey;
|
||
|
bhi = c - (c - dey);
|
||
|
blo = dey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
da[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
da[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
da3 = _j + _i;
|
||
|
bvirt = da3 - _j;
|
||
|
da[2] = _j - (da3 - bvirt) + (_i - bvirt);
|
||
|
da[3] = da3;
|
||
|
s1 = aex * cey;
|
||
|
c = splitter * aex;
|
||
|
ahi = c - (c - aex);
|
||
|
alo = aex - ahi;
|
||
|
c = splitter * cey;
|
||
|
bhi = c - (c - cey);
|
||
|
blo = cey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = cex * aey;
|
||
|
c = splitter * cex;
|
||
|
ahi = c - (c - cex);
|
||
|
alo = cex - ahi;
|
||
|
c = splitter * aey;
|
||
|
bhi = c - (c - aey);
|
||
|
blo = aey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
ac3 = _j + _i;
|
||
|
bvirt = ac3 - _j;
|
||
|
ac[2] = _j - (ac3 - bvirt) + (_i - bvirt);
|
||
|
ac[3] = ac3;
|
||
|
s1 = bex * dey;
|
||
|
c = splitter * bex;
|
||
|
ahi = c - (c - bex);
|
||
|
alo = bex - ahi;
|
||
|
c = splitter * dey;
|
||
|
bhi = c - (c - dey);
|
||
|
blo = dey - bhi;
|
||
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
t1 = dex * bey;
|
||
|
c = splitter * dex;
|
||
|
ahi = c - (c - dex);
|
||
|
alo = dex - ahi;
|
||
|
c = splitter * bey;
|
||
|
bhi = c - (c - bey);
|
||
|
blo = bey - bhi;
|
||
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
|
||
|
_i = s0 - t0;
|
||
|
bvirt = s0 - _i;
|
||
|
bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
|
||
|
_j = s1 + _i;
|
||
|
bvirt = _j - s1;
|
||
|
_0 = s1 - (_j - bvirt) + (_i - bvirt);
|
||
|
_i = _0 - t1;
|
||
|
bvirt = _0 - _i;
|
||
|
bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
|
||
|
bd3 = _j + _i;
|
||
|
bvirt = bd3 - _j;
|
||
|
bd[2] = _j - (bd3 - bvirt) + (_i - bvirt);
|
||
|
bd[3] = bd3;
|
||
|
|
||
|
const finlen = sum(
|
||
|
sum(
|
||
|
negate(liftadapt(bc, cd, bd, dez, bez, -cez, aex, aey, aez, adet), adet), adet,
|
||
|
liftadapt(cd, da, ac, aez, cez, dez, bex, bey, bez, bdet), bdet, abdet), abdet,
|
||
|
sum(
|
||
|
negate(liftadapt(da, ab, bd, bez, dez, aez, cex, cey, cez, cdet), cdet), cdet,
|
||
|
liftadapt(ab, bc, ac, cez, aez, -bez, dex, dey, dez, ddet), ddet, cddet), cddet, fin);
|
||
|
|
||
|
let det = estimate(finlen, fin);
|
||
|
let errbound = isperrboundB * permanent;
|
||
|
if (det >= errbound || -det >= errbound) {
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
bvirt = ax - aex;
|
||
|
aextail = ax - (aex + bvirt) + (bvirt - ex);
|
||
|
bvirt = ay - aey;
|
||
|
aeytail = ay - (aey + bvirt) + (bvirt - ey);
|
||
|
bvirt = az - aez;
|
||
|
aeztail = az - (aez + bvirt) + (bvirt - ez);
|
||
|
bvirt = bx - bex;
|
||
|
bextail = bx - (bex + bvirt) + (bvirt - ex);
|
||
|
bvirt = by - bey;
|
||
|
beytail = by - (bey + bvirt) + (bvirt - ey);
|
||
|
bvirt = bz - bez;
|
||
|
beztail = bz - (bez + bvirt) + (bvirt - ez);
|
||
|
bvirt = cx - cex;
|
||
|
cextail = cx - (cex + bvirt) + (bvirt - ex);
|
||
|
bvirt = cy - cey;
|
||
|
ceytail = cy - (cey + bvirt) + (bvirt - ey);
|
||
|
bvirt = cz - cez;
|
||
|
ceztail = cz - (cez + bvirt) + (bvirt - ez);
|
||
|
bvirt = dx - dex;
|
||
|
dextail = dx - (dex + bvirt) + (bvirt - ex);
|
||
|
bvirt = dy - dey;
|
||
|
deytail = dy - (dey + bvirt) + (bvirt - ey);
|
||
|
bvirt = dz - dez;
|
||
|
deztail = dz - (dez + bvirt) + (bvirt - ez);
|
||
|
if (aextail === 0 && aeytail === 0 && aeztail === 0 &&
|
||
|
bextail === 0 && beytail === 0 && beztail === 0 &&
|
||
|
cextail === 0 && ceytail === 0 && ceztail === 0 &&
|
||
|
dextail === 0 && deytail === 0 && deztail === 0) {
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
errbound = isperrboundC * permanent + resulterrbound * Math.abs(det);
|
||
|
|
||
|
const abeps = (aex * beytail + bey * aextail) - (aey * bextail + bex * aeytail);
|
||
|
const bceps = (bex * ceytail + cey * bextail) - (bey * cextail + cex * beytail);
|
||
|
const cdeps = (cex * deytail + dey * cextail) - (cey * dextail + dex * ceytail);
|
||
|
const daeps = (dex * aeytail + aey * dextail) - (dey * aextail + aex * deytail);
|
||
|
const aceps = (aex * ceytail + cey * aextail) - (aey * cextail + cex * aeytail);
|
||
|
const bdeps = (bex * deytail + dey * bextail) - (bey * dextail + dex * beytail);
|
||
|
det +=
|
||
|
(((bex * bex + bey * bey + bez * bez) * ((cez * daeps + dez * aceps + aez * cdeps) +
|
||
|
(ceztail * da3 + deztail * ac3 + aeztail * cd3)) + (dex * dex + dey * dey + dez * dez) *
|
||
|
((aez * bceps - bez * aceps + cez * abeps) + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) -
|
||
|
((aex * aex + aey * aey + aez * aez) * ((bez * cdeps - cez * bdeps + dez * bceps) +
|
||
|
(beztail * cd3 - ceztail * bd3 + deztail * bc3)) + (cex * cex + cey * cey + cez * cez) *
|
||
|
((dez * abeps + aez * bdeps + bez * daeps) + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) +
|
||
|
2 * (((bex * bextail + bey * beytail + bez * beztail) * (cez * da3 + dez * ac3 + aez * cd3) +
|
||
|
(dex * dextail + dey * deytail + dez * deztail) * (aez * bc3 - bez * ac3 + cez * ab3)) -
|
||
|
((aex * aextail + aey * aeytail + aez * aeztail) * (bez * cd3 - cez * bd3 + dez * bc3) +
|
||
|
(cex * cextail + cey * ceytail + cez * ceztail) * (dez * ab3 + aez * bd3 + bez * da3)));
|
||
|
|
||
|
if (det >= errbound || -det >= errbound) {
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
return insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez);
|
||
|
}
|
||
|
|
||
|
function insphere(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
|
||
|
const aex = ax - ex;
|
||
|
const bex = bx - ex;
|
||
|
const cex = cx - ex;
|
||
|
const dex = dx - ex;
|
||
|
const aey = ay - ey;
|
||
|
const bey = by - ey;
|
||
|
const cey = cy - ey;
|
||
|
const dey = dy - ey;
|
||
|
const aez = az - ez;
|
||
|
const bez = bz - ez;
|
||
|
const cez = cz - ez;
|
||
|
const dez = dz - ez;
|
||
|
|
||
|
const aexbey = aex * bey;
|
||
|
const bexaey = bex * aey;
|
||
|
const ab = aexbey - bexaey;
|
||
|
const bexcey = bex * cey;
|
||
|
const cexbey = cex * bey;
|
||
|
const bc = bexcey - cexbey;
|
||
|
const cexdey = cex * dey;
|
||
|
const dexcey = dex * cey;
|
||
|
const cd = cexdey - dexcey;
|
||
|
const dexaey = dex * aey;
|
||
|
const aexdey = aex * dey;
|
||
|
const da = dexaey - aexdey;
|
||
|
const aexcey = aex * cey;
|
||
|
const cexaey = cex * aey;
|
||
|
const ac = aexcey - cexaey;
|
||
|
const bexdey = bex * dey;
|
||
|
const dexbey = dex * bey;
|
||
|
const bd = bexdey - dexbey;
|
||
|
|
||
|
const alift = aex * aex + aey * aey + aez * aez;
|
||
|
const blift = bex * bex + bey * bey + bez * bez;
|
||
|
const clift = cex * cex + cey * cey + cez * cez;
|
||
|
const dlift = dex * dex + dey * dey + dez * dez;
|
||
|
|
||
|
const det =
|
||
|
(clift * (dez * ab + aez * bd + bez * da) - dlift * (aez * bc - bez * ac + cez * ab)) +
|
||
|
(alift * (bez * cd - cez * bd + dez * bc) - blift * (cez * da + dez * ac + aez * cd));
|
||
|
|
||
|
const aezplus = Math.abs(aez);
|
||
|
const bezplus = Math.abs(bez);
|
||
|
const cezplus = Math.abs(cez);
|
||
|
const dezplus = Math.abs(dez);
|
||
|
const aexbeyplus = Math.abs(aexbey) + Math.abs(bexaey);
|
||
|
const bexceyplus = Math.abs(bexcey) + Math.abs(cexbey);
|
||
|
const cexdeyplus = Math.abs(cexdey) + Math.abs(dexcey);
|
||
|
const dexaeyplus = Math.abs(dexaey) + Math.abs(aexdey);
|
||
|
const aexceyplus = Math.abs(aexcey) + Math.abs(cexaey);
|
||
|
const bexdeyplus = Math.abs(bexdey) + Math.abs(dexbey);
|
||
|
const permanent =
|
||
|
(cexdeyplus * bezplus + bexdeyplus * cezplus + bexceyplus * dezplus) * alift +
|
||
|
(dexaeyplus * cezplus + aexceyplus * dezplus + cexdeyplus * aezplus) * blift +
|
||
|
(aexbeyplus * dezplus + bexdeyplus * aezplus + dexaeyplus * bezplus) * clift +
|
||
|
(bexceyplus * aezplus + aexceyplus * bezplus + aexbeyplus * cezplus) * dlift;
|
||
|
|
||
|
const errbound = isperrboundA * permanent;
|
||
|
if (det > errbound || -det > errbound) {
|
||
|
return det;
|
||
|
}
|
||
|
return -insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent);
|
||
|
}
|
||
|
|
||
|
function inspherefast(pax, pay, paz, pbx, pby, pbz, pcx, pcy, pcz, pdx, pdy, pdz, pex, pey, pez) {
|
||
|
const aex = pax - pex;
|
||
|
const bex = pbx - pex;
|
||
|
const cex = pcx - pex;
|
||
|
const dex = pdx - pex;
|
||
|
const aey = pay - pey;
|
||
|
const bey = pby - pey;
|
||
|
const cey = pcy - pey;
|
||
|
const dey = pdy - pey;
|
||
|
const aez = paz - pez;
|
||
|
const bez = pbz - pez;
|
||
|
const cez = pcz - pez;
|
||
|
const dez = pdz - pez;
|
||
|
|
||
|
const ab = aex * bey - bex * aey;
|
||
|
const bc = bex * cey - cex * bey;
|
||
|
const cd = cex * dey - dex * cey;
|
||
|
const da = dex * aey - aex * dey;
|
||
|
const ac = aex * cey - cex * aey;
|
||
|
const bd = bex * dey - dex * bey;
|
||
|
|
||
|
const abc = aez * bc - bez * ac + cez * ab;
|
||
|
const bcd = bez * cd - cez * bd + dez * bc;
|
||
|
const cda = cez * da + dez * ac + aez * cd;
|
||
|
const dab = dez * ab + aez * bd + bez * da;
|
||
|
|
||
|
const alift = aex * aex + aey * aey + aez * aez;
|
||
|
const blift = bex * bex + bey * bey + bez * bez;
|
||
|
const clift = cex * cex + cey * cey + cez * cez;
|
||
|
const dlift = dex * dex + dey * dey + dez * dez;
|
||
|
|
||
|
return (clift * dab - dlift * abc) + (alift * bcd - blift * cda);
|
||
|
}
|
||
|
|
||
|
exports.insphere = insphere;
|
||
|
exports.inspherefast = inspherefast;
|
||
|
|
||
|
}));
|