site/node_modules/d3/dist/d3.js

20626 lines
573 KiB
JavaScript
Raw Normal View History

2024-10-14 06:09:33 +00:00
// https://d3js.org v7.9.0 Copyright 2010-2023 Mike Bostock
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
})(this, (function (exports) { 'use strict';
var version = "7.9.0";
function ascending$3(a, b) {
return a == null || b == null ? NaN : a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN;
}
function descending$2(a, b) {
return a == null || b == null ? NaN
: b < a ? -1
: b > a ? 1
: b >= a ? 0
: NaN;
}
function bisector(f) {
let compare1, compare2, delta;
// If an accessor is specified, promote it to a comparator. In this case we
// can test whether the search value is (self-) comparable. We cant do this
// for a comparator (except for specific, known comparators) because we cant
// tell if the comparator is symmetric, and an asymmetric comparator cant be
// used to test whether a single value is comparable.
if (f.length !== 2) {
compare1 = ascending$3;
compare2 = (d, x) => ascending$3(f(d), x);
delta = (d, x) => f(d) - x;
} else {
compare1 = f === ascending$3 || f === descending$2 ? f : zero$1;
compare2 = f;
delta = f;
}
function left(a, x, lo = 0, hi = a.length) {
if (lo < hi) {
if (compare1(x, x) !== 0) return hi;
do {
const mid = (lo + hi) >>> 1;
if (compare2(a[mid], x) < 0) lo = mid + 1;
else hi = mid;
} while (lo < hi);
}
return lo;
}
function right(a, x, lo = 0, hi = a.length) {
if (lo < hi) {
if (compare1(x, x) !== 0) return hi;
do {
const mid = (lo + hi) >>> 1;
if (compare2(a[mid], x) <= 0) lo = mid + 1;
else hi = mid;
} while (lo < hi);
}
return lo;
}
function center(a, x, lo = 0, hi = a.length) {
const i = left(a, x, lo, hi - 1);
return i > lo && delta(a[i - 1], x) > -delta(a[i], x) ? i - 1 : i;
}
return {left, center, right};
}
function zero$1() {
return 0;
}
function number$3(x) {
return x === null ? NaN : +x;
}
function* numbers(values, valueof) {
if (valueof === undefined) {
for (let value of values) {
if (value != null && (value = +value) >= value) {
yield value;
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) {
yield value;
}
}
}
}
const ascendingBisect = bisector(ascending$3);
const bisectRight = ascendingBisect.right;
const bisectLeft = ascendingBisect.left;
const bisectCenter = bisector(number$3).center;
var bisect = bisectRight;
function blur(values, r) {
if (!((r = +r) >= 0)) throw new RangeError("invalid r");
let length = values.length;
if (!((length = Math.floor(length)) >= 0)) throw new RangeError("invalid length");
if (!length || !r) return values;
const blur = blurf(r);
const temp = values.slice();
blur(values, temp, 0, length, 1);
blur(temp, values, 0, length, 1);
blur(values, temp, 0, length, 1);
return values;
}
const blur2 = Blur2(blurf);
const blurImage = Blur2(blurfImage);
function Blur2(blur) {
return function(data, rx, ry = rx) {
if (!((rx = +rx) >= 0)) throw new RangeError("invalid rx");
if (!((ry = +ry) >= 0)) throw new RangeError("invalid ry");
let {data: values, width, height} = data;
if (!((width = Math.floor(width)) >= 0)) throw new RangeError("invalid width");
if (!((height = Math.floor(height !== undefined ? height : values.length / width)) >= 0)) throw new RangeError("invalid height");
if (!width || !height || (!rx && !ry)) return data;
const blurx = rx && blur(rx);
const blury = ry && blur(ry);
const temp = values.slice();
if (blurx && blury) {
blurh(blurx, temp, values, width, height);
blurh(blurx, values, temp, width, height);
blurh(blurx, temp, values, width, height);
blurv(blury, values, temp, width, height);
blurv(blury, temp, values, width, height);
blurv(blury, values, temp, width, height);
} else if (blurx) {
blurh(blurx, values, temp, width, height);
blurh(blurx, temp, values, width, height);
blurh(blurx, values, temp, width, height);
} else if (blury) {
blurv(blury, values, temp, width, height);
blurv(blury, temp, values, width, height);
blurv(blury, values, temp, width, height);
}
return data;
};
}
function blurh(blur, T, S, w, h) {
for (let y = 0, n = w * h; y < n;) {
blur(T, S, y, y += w, 1);
}
}
function blurv(blur, T, S, w, h) {
for (let x = 0, n = w * h; x < w; ++x) {
blur(T, S, x, x + n, w);
}
}
function blurfImage(radius) {
const blur = blurf(radius);
return (T, S, start, stop, step) => {
start <<= 2, stop <<= 2, step <<= 2;
blur(T, S, start + 0, stop + 0, step);
blur(T, S, start + 1, stop + 1, step);
blur(T, S, start + 2, stop + 2, step);
blur(T, S, start + 3, stop + 3, step);
};
}
// Given a target array T, a source array S, sets each value T[i] to the average
// of {S[i - r], …, S[i], …, S[i + r]}, where r = ⌊radius⌋, start <= i < stop,
// for each i, i + step, i + 2 * step, etc., and where S[j] is clamped between
// S[start] (inclusive) and S[stop] (exclusive). If the given radius is not an
// integer, S[i - r - 1] and S[i + r + 1] are added to the sum, each weighted
// according to r - ⌊radius⌋.
function blurf(radius) {
const radius0 = Math.floor(radius);
if (radius0 === radius) return bluri(radius);
const t = radius - radius0;
const w = 2 * radius + 1;
return (T, S, start, stop, step) => { // stop must be aligned!
if (!((stop -= step) >= start)) return; // inclusive stop
let sum = radius0 * S[start];
const s0 = step * radius0;
const s1 = s0 + step;
for (let i = start, j = start + s0; i < j; i += step) {
sum += S[Math.min(stop, i)];
}
for (let i = start, j = stop; i <= j; i += step) {
sum += S[Math.min(stop, i + s0)];
T[i] = (sum + t * (S[Math.max(start, i - s1)] + S[Math.min(stop, i + s1)])) / w;
sum -= S[Math.max(start, i - s0)];
}
};
}
// Like blurf, but optimized for integer radius.
function bluri(radius) {
const w = 2 * radius + 1;
return (T, S, start, stop, step) => { // stop must be aligned!
if (!((stop -= step) >= start)) return; // inclusive stop
let sum = radius * S[start];
const s = step * radius;
for (let i = start, j = start + s; i < j; i += step) {
sum += S[Math.min(stop, i)];
}
for (let i = start, j = stop; i <= j; i += step) {
sum += S[Math.min(stop, i + s)];
T[i] = sum / w;
sum -= S[Math.max(start, i - s)];
}
};
}
function count$1(values, valueof) {
let count = 0;
if (valueof === undefined) {
for (let value of values) {
if (value != null && (value = +value) >= value) {
++count;
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) {
++count;
}
}
}
return count;
}
function length$3(array) {
return array.length | 0;
}
function empty$2(length) {
return !(length > 0);
}
function arrayify(values) {
return typeof values !== "object" || "length" in values ? values : Array.from(values);
}
function reducer(reduce) {
return values => reduce(...values);
}
function cross$2(...values) {
const reduce = typeof values[values.length - 1] === "function" && reducer(values.pop());
values = values.map(arrayify);
const lengths = values.map(length$3);
const j = values.length - 1;
const index = new Array(j + 1).fill(0);
const product = [];
if (j < 0 || lengths.some(empty$2)) return product;
while (true) {
product.push(index.map((j, i) => values[i][j]));
let i = j;
while (++index[i] === lengths[i]) {
if (i === 0) return reduce ? product.map(reduce) : product;
index[i--] = 0;
}
}
}
function cumsum(values, valueof) {
var sum = 0, index = 0;
return Float64Array.from(values, valueof === undefined
? v => (sum += +v || 0)
: v => (sum += +valueof(v, index++, values) || 0));
}
function variance(values, valueof) {
let count = 0;
let delta;
let mean = 0;
let sum = 0;
if (valueof === undefined) {
for (let value of values) {
if (value != null && (value = +value) >= value) {
delta = value - mean;
mean += delta / ++count;
sum += delta * (value - mean);
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) {
delta = value - mean;
mean += delta / ++count;
sum += delta * (value - mean);
}
}
}
if (count > 1) return sum / (count - 1);
}
function deviation(values, valueof) {
const v = variance(values, valueof);
return v ? Math.sqrt(v) : v;
}
function extent$1(values, valueof) {
let min;
let max;
if (valueof === undefined) {
for (const value of values) {
if (value != null) {
if (min === undefined) {
if (value >= value) min = max = value;
} else {
if (min > value) min = value;
if (max < value) max = value;
}
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null) {
if (min === undefined) {
if (value >= value) min = max = value;
} else {
if (min > value) min = value;
if (max < value) max = value;
}
}
}
}
return [min, max];
}
// https://github.com/python/cpython/blob/a74eea238f5baba15797e2e8b570d153bc8690a7/Modules/mathmodule.c#L1423
class Adder {
constructor() {
this._partials = new Float64Array(32);
this._n = 0;
}
add(x) {
const p = this._partials;
let i = 0;
for (let j = 0; j < this._n && j < 32; j++) {
const y = p[j],
hi = x + y,
lo = Math.abs(x) < Math.abs(y) ? x - (hi - y) : y - (hi - x);
if (lo) p[i++] = lo;
x = hi;
}
p[i] = x;
this._n = i + 1;
return this;
}
valueOf() {
const p = this._partials;
let n = this._n, x, y, lo, hi = 0;
if (n > 0) {
hi = p[--n];
while (n > 0) {
x = hi;
y = p[--n];
hi = x + y;
lo = y - (hi - x);
if (lo) break;
}
if (n > 0 && ((lo < 0 && p[n - 1] < 0) || (lo > 0 && p[n - 1] > 0))) {
y = lo * 2;
x = hi + y;
if (y == x - hi) hi = x;
}
}
return hi;
}
}
function fsum(values, valueof) {
const adder = new Adder();
if (valueof === undefined) {
for (let value of values) {
if (value = +value) {
adder.add(value);
}
}
} else {
let index = -1;
for (let value of values) {
if (value = +valueof(value, ++index, values)) {
adder.add(value);
}
}
}
return +adder;
}
function fcumsum(values, valueof) {
const adder = new Adder();
let index = -1;
return Float64Array.from(values, valueof === undefined
? v => adder.add(+v || 0)
: v => adder.add(+valueof(v, ++index, values) || 0)
);
}
class InternMap extends Map {
constructor(entries, key = keyof) {
super();
Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}});
if (entries != null) for (const [key, value] of entries) this.set(key, value);
}
get(key) {
return super.get(intern_get(this, key));
}
has(key) {
return super.has(intern_get(this, key));
}
set(key, value) {
return super.set(intern_set(this, key), value);
}
delete(key) {
return super.delete(intern_delete(this, key));
}
}
class InternSet extends Set {
constructor(values, key = keyof) {
super();
Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}});
if (values != null) for (const value of values) this.add(value);
}
has(value) {
return super.has(intern_get(this, value));
}
add(value) {
return super.add(intern_set(this, value));
}
delete(value) {
return super.delete(intern_delete(this, value));
}
}
function intern_get({_intern, _key}, value) {
const key = _key(value);
return _intern.has(key) ? _intern.get(key) : value;
}
function intern_set({_intern, _key}, value) {
const key = _key(value);
if (_intern.has(key)) return _intern.get(key);
_intern.set(key, value);
return value;
}
function intern_delete({_intern, _key}, value) {
const key = _key(value);
if (_intern.has(key)) {
value = _intern.get(key);
_intern.delete(key);
}
return value;
}
function keyof(value) {
return value !== null && typeof value === "object" ? value.valueOf() : value;
}
function identity$9(x) {
return x;
}
function group(values, ...keys) {
return nest(values, identity$9, identity$9, keys);
}
function groups(values, ...keys) {
return nest(values, Array.from, identity$9, keys);
}
function flatten$1(groups, keys) {
for (let i = 1, n = keys.length; i < n; ++i) {
groups = groups.flatMap(g => g.pop().map(([key, value]) => [...g, key, value]));
}
return groups;
}
function flatGroup(values, ...keys) {
return flatten$1(groups(values, ...keys), keys);
}
function flatRollup(values, reduce, ...keys) {
return flatten$1(rollups(values, reduce, ...keys), keys);
}
function rollup(values, reduce, ...keys) {
return nest(values, identity$9, reduce, keys);
}
function rollups(values, reduce, ...keys) {
return nest(values, Array.from, reduce, keys);
}
function index$4(values, ...keys) {
return nest(values, identity$9, unique, keys);
}
function indexes(values, ...keys) {
return nest(values, Array.from, unique, keys);
}
function unique(values) {
if (values.length !== 1) throw new Error("duplicate key");
return values[0];
}
function nest(values, map, reduce, keys) {
return (function regroup(values, i) {
if (i >= keys.length) return reduce(values);
const groups = new InternMap();
const keyof = keys[i++];
let index = -1;
for (const value of values) {
const key = keyof(value, ++index, values);
const group = groups.get(key);
if (group) group.push(value);
else groups.set(key, [value]);
}
for (const [key, values] of groups) {
groups.set(key, regroup(values, i));
}
return map(groups);
})(values, 0);
}
function permute(source, keys) {
return Array.from(keys, key => source[key]);
}
function sort(values, ...F) {
if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable");
values = Array.from(values);
let [f] = F;
if ((f && f.length !== 2) || F.length > 1) {
const index = Uint32Array.from(values, (d, i) => i);
if (F.length > 1) {
F = F.map(f => values.map(f));
index.sort((i, j) => {
for (const f of F) {
const c = ascendingDefined(f[i], f[j]);
if (c) return c;
}
});
} else {
f = values.map(f);
index.sort((i, j) => ascendingDefined(f[i], f[j]));
}
return permute(values, index);
}
return values.sort(compareDefined(f));
}
function compareDefined(compare = ascending$3) {
if (compare === ascending$3) return ascendingDefined;
if (typeof compare !== "function") throw new TypeError("compare is not a function");
return (a, b) => {
const x = compare(a, b);
if (x || x === 0) return x;
return (compare(b, b) === 0) - (compare(a, a) === 0);
};
}
function ascendingDefined(a, b) {
return (a == null || !(a >= a)) - (b == null || !(b >= b)) || (a < b ? -1 : a > b ? 1 : 0);
}
function groupSort(values, reduce, key) {
return (reduce.length !== 2
? sort(rollup(values, reduce, key), (([ak, av], [bk, bv]) => ascending$3(av, bv) || ascending$3(ak, bk)))
: sort(group(values, key), (([ak, av], [bk, bv]) => reduce(av, bv) || ascending$3(ak, bk))))
.map(([key]) => key);
}
var array$5 = Array.prototype;
var slice$3 = array$5.slice;
function constant$b(x) {
return () => x;
}
const e10 = Math.sqrt(50),
e5 = Math.sqrt(10),
e2 = Math.sqrt(2);
function tickSpec(start, stop, count) {
const step = (stop - start) / Math.max(0, count),
power = Math.floor(Math.log10(step)),
error = step / Math.pow(10, power),
factor = error >= e10 ? 10 : error >= e5 ? 5 : error >= e2 ? 2 : 1;
let i1, i2, inc;
if (power < 0) {
inc = Math.pow(10, -power) / factor;
i1 = Math.round(start * inc);
i2 = Math.round(stop * inc);
if (i1 / inc < start) ++i1;
if (i2 / inc > stop) --i2;
inc = -inc;
} else {
inc = Math.pow(10, power) * factor;
i1 = Math.round(start / inc);
i2 = Math.round(stop / inc);
if (i1 * inc < start) ++i1;
if (i2 * inc > stop) --i2;
}
if (i2 < i1 && 0.5 <= count && count < 2) return tickSpec(start, stop, count * 2);
return [i1, i2, inc];
}
function ticks(start, stop, count) {
stop = +stop, start = +start, count = +count;
if (!(count > 0)) return [];
if (start === stop) return [start];
const reverse = stop < start, [i1, i2, inc] = reverse ? tickSpec(stop, start, count) : tickSpec(start, stop, count);
if (!(i2 >= i1)) return [];
const n = i2 - i1 + 1, ticks = new Array(n);
if (reverse) {
if (inc < 0) for (let i = 0; i < n; ++i) ticks[i] = (i2 - i) / -inc;
else for (let i = 0; i < n; ++i) ticks[i] = (i2 - i) * inc;
} else {
if (inc < 0) for (let i = 0; i < n; ++i) ticks[i] = (i1 + i) / -inc;
else for (let i = 0; i < n; ++i) ticks[i] = (i1 + i) * inc;
}
return ticks;
}
function tickIncrement(start, stop, count) {
stop = +stop, start = +start, count = +count;
return tickSpec(start, stop, count)[2];
}
function tickStep(start, stop, count) {
stop = +stop, start = +start, count = +count;
const reverse = stop < start, inc = reverse ? tickIncrement(stop, start, count) : tickIncrement(start, stop, count);
return (reverse ? -1 : 1) * (inc < 0 ? 1 / -inc : inc);
}
function nice$1(start, stop, count) {
let prestep;
while (true) {
const step = tickIncrement(start, stop, count);
if (step === prestep || step === 0 || !isFinite(step)) {
return [start, stop];
} else if (step > 0) {
start = Math.floor(start / step) * step;
stop = Math.ceil(stop / step) * step;
} else if (step < 0) {
start = Math.ceil(start * step) / step;
stop = Math.floor(stop * step) / step;
}
prestep = step;
}
}
function thresholdSturges(values) {
return Math.max(1, Math.ceil(Math.log(count$1(values)) / Math.LN2) + 1);
}
function bin() {
var value = identity$9,
domain = extent$1,
threshold = thresholdSturges;
function histogram(data) {
if (!Array.isArray(data)) data = Array.from(data);
var i,
n = data.length,
x,
step,
values = new Array(n);
for (i = 0; i < n; ++i) {
values[i] = value(data[i], i, data);
}
var xz = domain(values),
x0 = xz[0],
x1 = xz[1],
tz = threshold(values, x0, x1);
// Convert number of thresholds into uniform thresholds, and nice the
// default domain accordingly.
if (!Array.isArray(tz)) {
const max = x1, tn = +tz;
if (domain === extent$1) [x0, x1] = nice$1(x0, x1, tn);
tz = ticks(x0, x1, tn);
// If the domain is aligned with the first tick (which it will by
// default), then we can use quantization rather than bisection to bin
// values, which is substantially faster.
if (tz[0] <= x0) step = tickIncrement(x0, x1, tn);
// If the last threshold is coincident with the domains upper bound, the
// last bin will be zero-width. If the default domain is used, and this
// last threshold is coincident with the maximum input value, we can
// extend the niced upper bound by one tick to ensure uniform bin widths;
// otherwise, we simply remove the last threshold. Note that we dont
// coerce values or the domain to numbers, and thus must be careful to
// compare order (>=) rather than strict equality (===)!
if (tz[tz.length - 1] >= x1) {
if (max >= x1 && domain === extent$1) {
const step = tickIncrement(x0, x1, tn);
if (isFinite(step)) {
if (step > 0) {
x1 = (Math.floor(x1 / step) + 1) * step;
} else if (step < 0) {
x1 = (Math.ceil(x1 * -step) + 1) / -step;
}
}
} else {
tz.pop();
}
}
}
// Remove any thresholds outside the domain.
// Be careful not to mutate an array owned by the user!
var m = tz.length, a = 0, b = m;
while (tz[a] <= x0) ++a;
while (tz[b - 1] > x1) --b;
if (a || b < m) tz = tz.slice(a, b), m = b - a;
var bins = new Array(m + 1),
bin;
// Initialize bins.
for (i = 0; i <= m; ++i) {
bin = bins[i] = [];
bin.x0 = i > 0 ? tz[i - 1] : x0;
bin.x1 = i < m ? tz[i] : x1;
}
// Assign data to bins by value, ignoring any outside the domain.
if (isFinite(step)) {
if (step > 0) {
for (i = 0; i < n; ++i) {
if ((x = values[i]) != null && x0 <= x && x <= x1) {
bins[Math.min(m, Math.floor((x - x0) / step))].push(data[i]);
}
}
} else if (step < 0) {
for (i = 0; i < n; ++i) {
if ((x = values[i]) != null && x0 <= x && x <= x1) {
const j = Math.floor((x0 - x) * step);
bins[Math.min(m, j + (tz[j] <= x))].push(data[i]); // handle off-by-one due to rounding
}
}
}
} else {
for (i = 0; i < n; ++i) {
if ((x = values[i]) != null && x0 <= x && x <= x1) {
bins[bisect(tz, x, 0, m)].push(data[i]);
}
}
}
return bins;
}
histogram.value = function(_) {
return arguments.length ? (value = typeof _ === "function" ? _ : constant$b(_), histogram) : value;
};
histogram.domain = function(_) {
return arguments.length ? (domain = typeof _ === "function" ? _ : constant$b([_[0], _[1]]), histogram) : domain;
};
histogram.thresholds = function(_) {
return arguments.length ? (threshold = typeof _ === "function" ? _ : constant$b(Array.isArray(_) ? slice$3.call(_) : _), histogram) : threshold;
};
return histogram;
}
function max$3(values, valueof) {
let max;
if (valueof === undefined) {
for (const value of values) {
if (value != null
&& (max < value || (max === undefined && value >= value))) {
max = value;
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null
&& (max < value || (max === undefined && value >= value))) {
max = value;
}
}
}
return max;
}
function maxIndex(values, valueof) {
let max;
let maxIndex = -1;
let index = -1;
if (valueof === undefined) {
for (const value of values) {
++index;
if (value != null
&& (max < value || (max === undefined && value >= value))) {
max = value, maxIndex = index;
}
}
} else {
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null
&& (max < value || (max === undefined && value >= value))) {
max = value, maxIndex = index;
}
}
}
return maxIndex;
}
function min$2(values, valueof) {
let min;
if (valueof === undefined) {
for (const value of values) {
if (value != null
&& (min > value || (min === undefined && value >= value))) {
min = value;
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null
&& (min > value || (min === undefined && value >= value))) {
min = value;
}
}
}
return min;
}
function minIndex(values, valueof) {
let min;
let minIndex = -1;
let index = -1;
if (valueof === undefined) {
for (const value of values) {
++index;
if (value != null
&& (min > value || (min === undefined && value >= value))) {
min = value, minIndex = index;
}
}
} else {
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null
&& (min > value || (min === undefined && value >= value))) {
min = value, minIndex = index;
}
}
}
return minIndex;
}
// Based on https://github.com/mourner/quickselect
// ISC license, Copyright 2018 Vladimir Agafonkin.
function quickselect(array, k, left = 0, right = Infinity, compare) {
k = Math.floor(k);
left = Math.floor(Math.max(0, left));
right = Math.floor(Math.min(array.length - 1, right));
if (!(left <= k && k <= right)) return array;
compare = compare === undefined ? ascendingDefined : compareDefined(compare);
while (right > left) {
if (right - left > 600) {
const n = right - left + 1;
const m = k - left + 1;
const z = Math.log(n);
const s = 0.5 * Math.exp(2 * z / 3);
const sd = 0.5 * Math.sqrt(z * s * (n - s) / n) * (m - n / 2 < 0 ? -1 : 1);
const newLeft = Math.max(left, Math.floor(k - m * s / n + sd));
const newRight = Math.min(right, Math.floor(k + (n - m) * s / n + sd));
quickselect(array, k, newLeft, newRight, compare);
}
const t = array[k];
let i = left;
let j = right;
swap$1(array, left, k);
if (compare(array[right], t) > 0) swap$1(array, left, right);
while (i < j) {
swap$1(array, i, j), ++i, --j;
while (compare(array[i], t) < 0) ++i;
while (compare(array[j], t) > 0) --j;
}
if (compare(array[left], t) === 0) swap$1(array, left, j);
else ++j, swap$1(array, j, right);
if (j <= k) left = j + 1;
if (k <= j) right = j - 1;
}
return array;
}
function swap$1(array, i, j) {
const t = array[i];
array[i] = array[j];
array[j] = t;
}
function greatest(values, compare = ascending$3) {
let max;
let defined = false;
if (compare.length === 1) {
let maxValue;
for (const element of values) {
const value = compare(element);
if (defined
? ascending$3(value, maxValue) > 0
: ascending$3(value, value) === 0) {
max = element;
maxValue = value;
defined = true;
}
}
} else {
for (const value of values) {
if (defined
? compare(value, max) > 0
: compare(value, value) === 0) {
max = value;
defined = true;
}
}
}
return max;
}
function quantile$1(values, p, valueof) {
values = Float64Array.from(numbers(values, valueof));
if (!(n = values.length) || isNaN(p = +p)) return;
if (p <= 0 || n < 2) return min$2(values);
if (p >= 1) return max$3(values);
var n,
i = (n - 1) * p,
i0 = Math.floor(i),
value0 = max$3(quickselect(values, i0).subarray(0, i0 + 1)),
value1 = min$2(values.subarray(i0 + 1));
return value0 + (value1 - value0) * (i - i0);
}
function quantileSorted(values, p, valueof = number$3) {
if (!(n = values.length) || isNaN(p = +p)) return;
if (p <= 0 || n < 2) return +valueof(values[0], 0, values);
if (p >= 1) return +valueof(values[n - 1], n - 1, values);
var n,
i = (n - 1) * p,
i0 = Math.floor(i),
value0 = +valueof(values[i0], i0, values),
value1 = +valueof(values[i0 + 1], i0 + 1, values);
return value0 + (value1 - value0) * (i - i0);
}
function quantileIndex(values, p, valueof = number$3) {
if (isNaN(p = +p)) return;
numbers = Float64Array.from(values, (_, i) => number$3(valueof(values[i], i, values)));
if (p <= 0) return minIndex(numbers);
if (p >= 1) return maxIndex(numbers);
var numbers,
index = Uint32Array.from(values, (_, i) => i),
j = numbers.length - 1,
i = Math.floor(j * p);
quickselect(index, i, 0, j, (i, j) => ascendingDefined(numbers[i], numbers[j]));
i = greatest(index.subarray(0, i + 1), (i) => numbers[i]);
return i >= 0 ? i : -1;
}
function thresholdFreedmanDiaconis(values, min, max) {
const c = count$1(values), d = quantile$1(values, 0.75) - quantile$1(values, 0.25);
return c && d ? Math.ceil((max - min) / (2 * d * Math.pow(c, -1 / 3))) : 1;
}
function thresholdScott(values, min, max) {
const c = count$1(values), d = deviation(values);
return c && d ? Math.ceil((max - min) * Math.cbrt(c) / (3.49 * d)) : 1;
}
function mean(values, valueof) {
let count = 0;
let sum = 0;
if (valueof === undefined) {
for (let value of values) {
if (value != null && (value = +value) >= value) {
++count, sum += value;
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) {
++count, sum += value;
}
}
}
if (count) return sum / count;
}
function median(values, valueof) {
return quantile$1(values, 0.5, valueof);
}
function medianIndex(values, valueof) {
return quantileIndex(values, 0.5, valueof);
}
function* flatten(arrays) {
for (const array of arrays) {
yield* array;
}
}
function merge(arrays) {
return Array.from(flatten(arrays));
}
function mode(values, valueof) {
const counts = new InternMap();
if (valueof === undefined) {
for (let value of values) {
if (value != null && value >= value) {
counts.set(value, (counts.get(value) || 0) + 1);
}
}
} else {
let index = -1;
for (let value of values) {
if ((value = valueof(value, ++index, values)) != null && value >= value) {
counts.set(value, (counts.get(value) || 0) + 1);
}
}
}
let modeValue;
let modeCount = 0;
for (const [value, count] of counts) {
if (count > modeCount) {
modeCount = count;
modeValue = value;
}
}
return modeValue;
}
function pairs(values, pairof = pair) {
const pairs = [];
let previous;
let first = false;
for (const value of values) {
if (first) pairs.push(pairof(previous, value));
previous = value;
first = true;
}
return pairs;
}
function pair(a, b) {
return [a, b];
}
function range$2(start, stop, step) {
start = +start, stop = +stop, step = (n = arguments.length) < 2 ? (stop = start, start = 0, 1) : n < 3 ? 1 : +step;
var i = -1,
n = Math.max(0, Math.ceil((stop - start) / step)) | 0,
range = new Array(n);
while (++i < n) {
range[i] = start + i * step;
}
return range;
}
function rank(values, valueof = ascending$3) {
if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable");
let V = Array.from(values);
const R = new Float64Array(V.length);
if (valueof.length !== 2) V = V.map(valueof), valueof = ascending$3;
const compareIndex = (i, j) => valueof(V[i], V[j]);
let k, r;
values = Uint32Array.from(V, (_, i) => i);
// Risky chaining due to Safari 14 https://github.com/d3/d3-array/issues/123
values.sort(valueof === ascending$3 ? (i, j) => ascendingDefined(V[i], V[j]) : compareDefined(compareIndex));
values.forEach((j, i) => {
const c = compareIndex(j, k === undefined ? j : k);
if (c >= 0) {
if (k === undefined || c > 0) k = j, r = i;
R[j] = r;
} else {
R[j] = NaN;
}
});
return R;
}
function least(values, compare = ascending$3) {
let min;
let defined = false;
if (compare.length === 1) {
let minValue;
for (const element of values) {
const value = compare(element);
if (defined
? ascending$3(value, minValue) < 0
: ascending$3(value, value) === 0) {
min = element;
minValue = value;
defined = true;
}
}
} else {
for (const value of values) {
if (defined
? compare(value, min) < 0
: compare(value, value) === 0) {
min = value;
defined = true;
}
}
}
return min;
}
function leastIndex(values, compare = ascending$3) {
if (compare.length === 1) return minIndex(values, compare);
let minValue;
let min = -1;
let index = -1;
for (const value of values) {
++index;
if (min < 0
? compare(value, value) === 0
: compare(value, minValue) < 0) {
minValue = value;
min = index;
}
}
return min;
}
function greatestIndex(values, compare = ascending$3) {
if (compare.length === 1) return maxIndex(values, compare);
let maxValue;
let max = -1;
let index = -1;
for (const value of values) {
++index;
if (max < 0
? compare(value, value) === 0
: compare(value, maxValue) > 0) {
maxValue = value;
max = index;
}
}
return max;
}
function scan(values, compare) {
const index = leastIndex(values, compare);
return index < 0 ? undefined : index;
}
var shuffle$1 = shuffler(Math.random);
function shuffler(random) {
return function shuffle(array, i0 = 0, i1 = array.length) {
let m = i1 - (i0 = +i0);
while (m) {
const i = random() * m-- | 0, t = array[m + i0];
array[m + i0] = array[i + i0];
array[i + i0] = t;
}
return array;
};
}
function sum$2(values, valueof) {
let sum = 0;
if (valueof === undefined) {
for (let value of values) {
if (value = +value) {
sum += value;
}
}
} else {
let index = -1;
for (let value of values) {
if (value = +valueof(value, ++index, values)) {
sum += value;
}
}
}
return sum;
}
function transpose(matrix) {
if (!(n = matrix.length)) return [];
for (var i = -1, m = min$2(matrix, length$2), transpose = new Array(m); ++i < m;) {
for (var j = -1, n, row = transpose[i] = new Array(n); ++j < n;) {
row[j] = matrix[j][i];
}
}
return transpose;
}
function length$2(d) {
return d.length;
}
function zip() {
return transpose(arguments);
}
function every(values, test) {
if (typeof test !== "function") throw new TypeError("test is not a function");
let index = -1;
for (const value of values) {
if (!test(value, ++index, values)) {
return false;
}
}
return true;
}
function some(values, test) {
if (typeof test !== "function") throw new TypeError("test is not a function");
let index = -1;
for (const value of values) {
if (test(value, ++index, values)) {
return true;
}
}
return false;
}
function filter$1(values, test) {
if (typeof test !== "function") throw new TypeError("test is not a function");
const array = [];
let index = -1;
for (const value of values) {
if (test(value, ++index, values)) {
array.push(value);
}
}
return array;
}
function map$1(values, mapper) {
if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable");
if (typeof mapper !== "function") throw new TypeError("mapper is not a function");
return Array.from(values, (value, index) => mapper(value, index, values));
}
function reduce(values, reducer, value) {
if (typeof reducer !== "function") throw new TypeError("reducer is not a function");
const iterator = values[Symbol.iterator]();
let done, next, index = -1;
if (arguments.length < 3) {
({done, value} = iterator.next());
if (done) return;
++index;
}
while (({done, value: next} = iterator.next()), !done) {
value = reducer(value, next, ++index, values);
}
return value;
}
function reverse$1(values) {
if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable");
return Array.from(values).reverse();
}
function difference(values, ...others) {
values = new InternSet(values);
for (const other of others) {
for (const value of other) {
values.delete(value);
}
}
return values;
}
function disjoint(values, other) {
const iterator = other[Symbol.iterator](), set = new InternSet();
for (const v of values) {
if (set.has(v)) return false;
let value, done;
while (({value, done} = iterator.next())) {
if (done) break;
if (Object.is(v, value)) return false;
set.add(value);
}
}
return true;
}
function intersection(values, ...others) {
values = new InternSet(values);
others = others.map(set$2);
out: for (const value of values) {
for (const other of others) {
if (!other.has(value)) {
values.delete(value);
continue out;
}
}
}
return values;
}
function set$2(values) {
return values instanceof InternSet ? values : new InternSet(values);
}
function superset(values, other) {
const iterator = values[Symbol.iterator](), set = new Set();
for (const o of other) {
const io = intern(o);
if (set.has(io)) continue;
let value, done;
while (({value, done} = iterator.next())) {
if (done) return false;
const ivalue = intern(value);
set.add(ivalue);
if (Object.is(io, ivalue)) break;
}
}
return true;
}
function intern(value) {
return value !== null && typeof value === "object" ? value.valueOf() : value;
}
function subset(values, other) {
return superset(other, values);
}
function union(...others) {
const set = new InternSet();
for (const other of others) {
for (const o of other) {
set.add(o);
}
}
return set;
}
function identity$8(x) {
return x;
}
var top = 1,
right = 2,
bottom = 3,
left = 4,
epsilon$6 = 1e-6;
function translateX(x) {
return "translate(" + x + ",0)";
}
function translateY(y) {
return "translate(0," + y + ")";
}
function number$2(scale) {
return d => +scale(d);
}
function center$1(scale, offset) {
offset = Math.max(0, scale.bandwidth() - offset * 2) / 2;
if (scale.round()) offset = Math.round(offset);
return d => +scale(d) + offset;
}
function entering() {
return !this.__axis;
}
function axis(orient, scale) {
var tickArguments = [],
tickValues = null,
tickFormat = null,
tickSizeInner = 6,
tickSizeOuter = 6,
tickPadding = 3,
offset = typeof window !== "undefined" && window.devicePixelRatio > 1 ? 0 : 0.5,
k = orient === top || orient === left ? -1 : 1,
x = orient === left || orient === right ? "x" : "y",
transform = orient === top || orient === bottom ? translateX : translateY;
function axis(context) {
var values = tickValues == null ? (scale.ticks ? scale.ticks.apply(scale, tickArguments) : scale.domain()) : tickValues,
format = tickFormat == null ? (scale.tickFormat ? scale.tickFormat.apply(scale, tickArguments) : identity$8) : tickFormat,
spacing = Math.max(tickSizeInner, 0) + tickPadding,
range = scale.range(),
range0 = +range[0] + offset,
range1 = +range[range.length - 1] + offset,
position = (scale.bandwidth ? center$1 : number$2)(scale.copy(), offset),
selection = context.selection ? context.selection() : context,
path = selection.selectAll(".domain").data([null]),
tick = selection.selectAll(".tick").data(values, scale).order(),
tickExit = tick.exit(),
tickEnter = tick.enter().append("g").attr("class", "tick"),
line = tick.select("line"),
text = tick.select("text");
path = path.merge(path.enter().insert("path", ".tick")
.attr("class", "domain")
.attr("stroke", "currentColor"));
tick = tick.merge(tickEnter);
line = line.merge(tickEnter.append("line")
.attr("stroke", "currentColor")
.attr(x + "2", k * tickSizeInner));
text = text.merge(tickEnter.append("text")
.attr("fill", "currentColor")
.attr(x, k * spacing)
.attr("dy", orient === top ? "0em" : orient === bottom ? "0.71em" : "0.32em"));
if (context !== selection) {
path = path.transition(context);
tick = tick.transition(context);
line = line.transition(context);
text = text.transition(context);
tickExit = tickExit.transition(context)
.attr("opacity", epsilon$6)
.attr("transform", function(d) { return isFinite(d = position(d)) ? transform(d + offset) : this.getAttribute("transform"); });
tickEnter
.attr("opacity", epsilon$6)
.attr("transform", function(d) { var p = this.parentNode.__axis; return transform((p && isFinite(p = p(d)) ? p : position(d)) + offset); });
}
tickExit.remove();
path
.attr("d", orient === left || orient === right
? (tickSizeOuter ? "M" + k * tickSizeOuter + "," + range0 + "H" + offset + "V" + range1 + "H" + k * tickSizeOuter : "M" + offset + "," + range0 + "V" + range1)
: (tickSizeOuter ? "M" + range0 + "," + k * tickSizeOuter + "V" + offset + "H" + range1 + "V" + k * tickSizeOuter : "M" + range0 + "," + offset + "H" + range1));
tick
.attr("opacity", 1)
.attr("transform", function(d) { return transform(position(d) + offset); });
line
.attr(x + "2", k * tickSizeInner);
text
.attr(x, k * spacing)
.text(format);
selection.filter(entering)
.attr("fill", "none")
.attr("font-size", 10)
.attr("font-family", "sans-serif")
.attr("text-anchor", orient === right ? "start" : orient === left ? "end" : "middle");
selection
.each(function() { this.__axis = position; });
}
axis.scale = function(_) {
return arguments.length ? (scale = _, axis) : scale;
};
axis.ticks = function() {
return tickArguments = Array.from(arguments), axis;
};
axis.tickArguments = function(_) {
return arguments.length ? (tickArguments = _ == null ? [] : Array.from(_), axis) : tickArguments.slice();
};
axis.tickValues = function(_) {
return arguments.length ? (tickValues = _ == null ? null : Array.from(_), axis) : tickValues && tickValues.slice();
};
axis.tickFormat = function(_) {
return arguments.length ? (tickFormat = _, axis) : tickFormat;
};
axis.tickSize = function(_) {
return arguments.length ? (tickSizeInner = tickSizeOuter = +_, axis) : tickSizeInner;
};
axis.tickSizeInner = function(_) {
return arguments.length ? (tickSizeInner = +_, axis) : tickSizeInner;
};
axis.tickSizeOuter = function(_) {
return arguments.length ? (tickSizeOuter = +_, axis) : tickSizeOuter;
};
axis.tickPadding = function(_) {
return arguments.length ? (tickPadding = +_, axis) : tickPadding;
};
axis.offset = function(_) {
return arguments.length ? (offset = +_, axis) : offset;
};
return axis;
}
function axisTop(scale) {
return axis(top, scale);
}
function axisRight(scale) {
return axis(right, scale);
}
function axisBottom(scale) {
return axis(bottom, scale);
}
function axisLeft(scale) {
return axis(left, scale);
}
var noop$3 = {value: () => {}};
function dispatch() {
for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) {
if (!(t = arguments[i] + "") || (t in _) || /[\s.]/.test(t)) throw new Error("illegal type: " + t);
_[t] = [];
}
return new Dispatch(_);
}
function Dispatch(_) {
this._ = _;
}
function parseTypenames$1(typenames, types) {
return typenames.trim().split(/^|\s+/).map(function(t) {
var name = "", i = t.indexOf(".");
if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i);
if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t);
return {type: t, name: name};
});
}
Dispatch.prototype = dispatch.prototype = {
constructor: Dispatch,
on: function(typename, callback) {
var _ = this._,
T = parseTypenames$1(typename + "", _),
t,
i = -1,
n = T.length;
// If no callback was specified, return the callback of the given type and name.
if (arguments.length < 2) {
while (++i < n) if ((t = (typename = T[i]).type) && (t = get$1(_[t], typename.name))) return t;
return;
}
// If a type was specified, set the callback for the given type and name.
// Otherwise, if a null callback was specified, remove callbacks of the given name.
if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback);
while (++i < n) {
if (t = (typename = T[i]).type) _[t] = set$1(_[t], typename.name, callback);
else if (callback == null) for (t in _) _[t] = set$1(_[t], typename.name, null);
}
return this;
},
copy: function() {
var copy = {}, _ = this._;
for (var t in _) copy[t] = _[t].slice();
return new Dispatch(copy);
},
call: function(type, that) {
if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2];
if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type);
for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args);
},
apply: function(type, that, args) {
if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type);
for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args);
}
};
function get$1(type, name) {
for (var i = 0, n = type.length, c; i < n; ++i) {
if ((c = type[i]).name === name) {
return c.value;
}
}
}
function set$1(type, name, callback) {
for (var i = 0, n = type.length; i < n; ++i) {
if (type[i].name === name) {
type[i] = noop$3, type = type.slice(0, i).concat(type.slice(i + 1));
break;
}
}
if (callback != null) type.push({name: name, value: callback});
return type;
}
var xhtml = "http://www.w3.org/1999/xhtml";
var namespaces = {
svg: "http://www.w3.org/2000/svg",
xhtml: xhtml,
xlink: "http://www.w3.org/1999/xlink",
xml: "http://www.w3.org/XML/1998/namespace",
xmlns: "http://www.w3.org/2000/xmlns/"
};
function namespace(name) {
var prefix = name += "", i = prefix.indexOf(":");
if (i >= 0 && (prefix = name.slice(0, i)) !== "xmlns") name = name.slice(i + 1);
return namespaces.hasOwnProperty(prefix) ? {space: namespaces[prefix], local: name} : name; // eslint-disable-line no-prototype-builtins
}
function creatorInherit(name) {
return function() {
var document = this.ownerDocument,
uri = this.namespaceURI;
return uri === xhtml && document.documentElement.namespaceURI === xhtml
? document.createElement(name)
: document.createElementNS(uri, name);
};
}
function creatorFixed(fullname) {
return function() {
return this.ownerDocument.createElementNS(fullname.space, fullname.local);
};
}
function creator(name) {
var fullname = namespace(name);
return (fullname.local
? creatorFixed
: creatorInherit)(fullname);
}
function none$2() {}
function selector(selector) {
return selector == null ? none$2 : function() {
return this.querySelector(selector);
};
}
function selection_select(select) {
if (typeof select !== "function") select = selector(select);
for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, subgroup = subgroups[j] = new Array(n), node, subnode, i = 0; i < n; ++i) {
if ((node = group[i]) && (subnode = select.call(node, node.__data__, i, group))) {
if ("__data__" in node) subnode.__data__ = node.__data__;
subgroup[i] = subnode;
}
}
}
return new Selection$1(subgroups, this._parents);
}
// Given something array like (or null), returns something that is strictly an
// array. This is used to ensure that array-like objects passed to d3.selectAll
// or selection.selectAll are converted into proper arrays when creating a
// selection; we dont ever want to create a selection backed by a live
// HTMLCollection or NodeList. However, note that selection.selectAll will use a
// static NodeList as a group, since it safely derived from querySelectorAll.
function array$4(x) {
return x == null ? [] : Array.isArray(x) ? x : Array.from(x);
}
function empty$1() {
return [];
}
function selectorAll(selector) {
return selector == null ? empty$1 : function() {
return this.querySelectorAll(selector);
};
}
function arrayAll(select) {
return function() {
return array$4(select.apply(this, arguments));
};
}
function selection_selectAll(select) {
if (typeof select === "function") select = arrayAll(select);
else select = selectorAll(select);
for (var groups = this._groups, m = groups.length, subgroups = [], parents = [], j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) {
if (node = group[i]) {
subgroups.push(select.call(node, node.__data__, i, group));
parents.push(node);
}
}
}
return new Selection$1(subgroups, parents);
}
function matcher(selector) {
return function() {
return this.matches(selector);
};
}
function childMatcher(selector) {
return function(node) {
return node.matches(selector);
};
}
var find$1 = Array.prototype.find;
function childFind(match) {
return function() {
return find$1.call(this.children, match);
};
}
function childFirst() {
return this.firstElementChild;
}
function selection_selectChild(match) {
return this.select(match == null ? childFirst
: childFind(typeof match === "function" ? match : childMatcher(match)));
}
var filter = Array.prototype.filter;
function children() {
return Array.from(this.children);
}
function childrenFilter(match) {
return function() {
return filter.call(this.children, match);
};
}
function selection_selectChildren(match) {
return this.selectAll(match == null ? children
: childrenFilter(typeof match === "function" ? match : childMatcher(match)));
}
function selection_filter(match) {
if (typeof match !== "function") match = matcher(match);
for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, subgroup = subgroups[j] = [], node, i = 0; i < n; ++i) {
if ((node = group[i]) && match.call(node, node.__data__, i, group)) {
subgroup.push(node);
}
}
}
return new Selection$1(subgroups, this._parents);
}
function sparse(update) {
return new Array(update.length);
}
function selection_enter() {
return new Selection$1(this._enter || this._groups.map(sparse), this._parents);
}
function EnterNode(parent, datum) {
this.ownerDocument = parent.ownerDocument;
this.namespaceURI = parent.namespaceURI;
this._next = null;
this._parent = parent;
this.__data__ = datum;
}
EnterNode.prototype = {
constructor: EnterNode,
appendChild: function(child) { return this._parent.insertBefore(child, this._next); },
insertBefore: function(child, next) { return this._parent.insertBefore(child, next); },
querySelector: function(selector) { return this._parent.querySelector(selector); },
querySelectorAll: function(selector) { return this._parent.querySelectorAll(selector); }
};
function constant$a(x) {
return function() {
return x;
};
}
function bindIndex(parent, group, enter, update, exit, data) {
var i = 0,
node,
groupLength = group.length,
dataLength = data.length;
// Put any non-null nodes that fit into update.
// Put any null nodes into enter.
// Put any remaining data into enter.
for (; i < dataLength; ++i) {
if (node = group[i]) {
node.__data__ = data[i];
update[i] = node;
} else {
enter[i] = new EnterNode(parent, data[i]);
}
}
// Put any non-null nodes that dont fit into exit.
for (; i < groupLength; ++i) {
if (node = group[i]) {
exit[i] = node;
}
}
}
function bindKey(parent, group, enter, update, exit, data, key) {
var i,
node,
nodeByKeyValue = new Map,
groupLength = group.length,
dataLength = data.length,
keyValues = new Array(groupLength),
keyValue;
// Compute the key for each node.
// If multiple nodes have the same key, the duplicates are added to exit.
for (i = 0; i < groupLength; ++i) {
if (node = group[i]) {
keyValues[i] = keyValue = key.call(node, node.__data__, i, group) + "";
if (nodeByKeyValue.has(keyValue)) {
exit[i] = node;
} else {
nodeByKeyValue.set(keyValue, node);
}
}
}
// Compute the key for each datum.
// If there a node associated with this key, join and add it to update.
// If there is not (or the key is a duplicate), add it to enter.
for (i = 0; i < dataLength; ++i) {
keyValue = key.call(parent, data[i], i, data) + "";
if (node = nodeByKeyValue.get(keyValue)) {
update[i] = node;
node.__data__ = data[i];
nodeByKeyValue.delete(keyValue);
} else {
enter[i] = new EnterNode(parent, data[i]);
}
}
// Add any remaining nodes that were not bound to data to exit.
for (i = 0; i < groupLength; ++i) {
if ((node = group[i]) && (nodeByKeyValue.get(keyValues[i]) === node)) {
exit[i] = node;
}
}
}
function datum(node) {
return node.__data__;
}
function selection_data(value, key) {
if (!arguments.length) return Array.from(this, datum);
var bind = key ? bindKey : bindIndex,
parents = this._parents,
groups = this._groups;
if (typeof value !== "function") value = constant$a(value);
for (var m = groups.length, update = new Array(m), enter = new Array(m), exit = new Array(m), j = 0; j < m; ++j) {
var parent = parents[j],
group = groups[j],
groupLength = group.length,
data = arraylike(value.call(parent, parent && parent.__data__, j, parents)),
dataLength = data.length,
enterGroup = enter[j] = new Array(dataLength),
updateGroup = update[j] = new Array(dataLength),
exitGroup = exit[j] = new Array(groupLength);
bind(parent, group, enterGroup, updateGroup, exitGroup, data, key);
// Now connect the enter nodes to their following update node, such that
// appendChild can insert the materialized enter node before this node,
// rather than at the end of the parent node.
for (var i0 = 0, i1 = 0, previous, next; i0 < dataLength; ++i0) {
if (previous = enterGroup[i0]) {
if (i0 >= i1) i1 = i0 + 1;
while (!(next = updateGroup[i1]) && ++i1 < dataLength);
previous._next = next || null;
}
}
}
update = new Selection$1(update, parents);
update._enter = enter;
update._exit = exit;
return update;
}
// Given some data, this returns an array-like view of it: an object that
// exposes a length property and allows numeric indexing. Note that unlike
// selectAll, this isnt worried about “live” collections because the resulting
// array will only be used briefly while data is being bound. (It is possible to
// cause the data to change while iterating by using a key function, but please
// dont; wed rather avoid a gratuitous copy.)
function arraylike(data) {
return typeof data === "object" && "length" in data
? data // Array, TypedArray, NodeList, array-like
: Array.from(data); // Map, Set, iterable, string, or anything else
}
function selection_exit() {
return new Selection$1(this._exit || this._groups.map(sparse), this._parents);
}
function selection_join(onenter, onupdate, onexit) {
var enter = this.enter(), update = this, exit = this.exit();
if (typeof onenter === "function") {
enter = onenter(enter);
if (enter) enter = enter.selection();
} else {
enter = enter.append(onenter + "");
}
if (onupdate != null) {
update = onupdate(update);
if (update) update = update.selection();
}
if (onexit == null) exit.remove(); else onexit(exit);
return enter && update ? enter.merge(update).order() : update;
}
function selection_merge(context) {
var selection = context.selection ? context.selection() : context;
for (var groups0 = this._groups, groups1 = selection._groups, m0 = groups0.length, m1 = groups1.length, m = Math.min(m0, m1), merges = new Array(m0), j = 0; j < m; ++j) {
for (var group0 = groups0[j], group1 = groups1[j], n = group0.length, merge = merges[j] = new Array(n), node, i = 0; i < n; ++i) {
if (node = group0[i] || group1[i]) {
merge[i] = node;
}
}
}
for (; j < m0; ++j) {
merges[j] = groups0[j];
}
return new Selection$1(merges, this._parents);
}
function selection_order() {
for (var groups = this._groups, j = -1, m = groups.length; ++j < m;) {
for (var group = groups[j], i = group.length - 1, next = group[i], node; --i >= 0;) {
if (node = group[i]) {
if (next && node.compareDocumentPosition(next) ^ 4) next.parentNode.insertBefore(node, next);
next = node;
}
}
}
return this;
}
function selection_sort(compare) {
if (!compare) compare = ascending$2;
function compareNode(a, b) {
return a && b ? compare(a.__data__, b.__data__) : !a - !b;
}
for (var groups = this._groups, m = groups.length, sortgroups = new Array(m), j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, sortgroup = sortgroups[j] = new Array(n), node, i = 0; i < n; ++i) {
if (node = group[i]) {
sortgroup[i] = node;
}
}
sortgroup.sort(compareNode);
}
return new Selection$1(sortgroups, this._parents).order();
}
function ascending$2(a, b) {
return a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN;
}
function selection_call() {
var callback = arguments[0];
arguments[0] = this;
callback.apply(null, arguments);
return this;
}
function selection_nodes() {
return Array.from(this);
}
function selection_node() {
for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) {
for (var group = groups[j], i = 0, n = group.length; i < n; ++i) {
var node = group[i];
if (node) return node;
}
}
return null;
}
function selection_size() {
let size = 0;
for (const node of this) ++size; // eslint-disable-line no-unused-vars
return size;
}
function selection_empty() {
return !this.node();
}
function selection_each(callback) {
for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) {
for (var group = groups[j], i = 0, n = group.length, node; i < n; ++i) {
if (node = group[i]) callback.call(node, node.__data__, i, group);
}
}
return this;
}
function attrRemove$1(name) {
return function() {
this.removeAttribute(name);
};
}
function attrRemoveNS$1(fullname) {
return function() {
this.removeAttributeNS(fullname.space, fullname.local);
};
}
function attrConstant$1(name, value) {
return function() {
this.setAttribute(name, value);
};
}
function attrConstantNS$1(fullname, value) {
return function() {
this.setAttributeNS(fullname.space, fullname.local, value);
};
}
function attrFunction$1(name, value) {
return function() {
var v = value.apply(this, arguments);
if (v == null) this.removeAttribute(name);
else this.setAttribute(name, v);
};
}
function attrFunctionNS$1(fullname, value) {
return function() {
var v = value.apply(this, arguments);
if (v == null) this.removeAttributeNS(fullname.space, fullname.local);
else this.setAttributeNS(fullname.space, fullname.local, v);
};
}
function selection_attr(name, value) {
var fullname = namespace(name);
if (arguments.length < 2) {
var node = this.node();
return fullname.local
? node.getAttributeNS(fullname.space, fullname.local)
: node.getAttribute(fullname);
}
return this.each((value == null
? (fullname.local ? attrRemoveNS$1 : attrRemove$1) : (typeof value === "function"
? (fullname.local ? attrFunctionNS$1 : attrFunction$1)
: (fullname.local ? attrConstantNS$1 : attrConstant$1)))(fullname, value));
}
function defaultView(node) {
return (node.ownerDocument && node.ownerDocument.defaultView) // node is a Node
|| (node.document && node) // node is a Window
|| node.defaultView; // node is a Document
}
function styleRemove$1(name) {
return function() {
this.style.removeProperty(name);
};
}
function styleConstant$1(name, value, priority) {
return function() {
this.style.setProperty(name, value, priority);
};
}
function styleFunction$1(name, value, priority) {
return function() {
var v = value.apply(this, arguments);
if (v == null) this.style.removeProperty(name);
else this.style.setProperty(name, v, priority);
};
}
function selection_style(name, value, priority) {
return arguments.length > 1
? this.each((value == null
? styleRemove$1 : typeof value === "function"
? styleFunction$1
: styleConstant$1)(name, value, priority == null ? "" : priority))
: styleValue(this.node(), name);
}
function styleValue(node, name) {
return node.style.getPropertyValue(name)
|| defaultView(node).getComputedStyle(node, null).getPropertyValue(name);
}
function propertyRemove(name) {
return function() {
delete this[name];
};
}
function propertyConstant(name, value) {
return function() {
this[name] = value;
};
}
function propertyFunction(name, value) {
return function() {
var v = value.apply(this, arguments);
if (v == null) delete this[name];
else this[name] = v;
};
}
function selection_property(name, value) {
return arguments.length > 1
? this.each((value == null
? propertyRemove : typeof value === "function"
? propertyFunction
: propertyConstant)(name, value))
: this.node()[name];
}
function classArray(string) {
return string.trim().split(/^|\s+/);
}
function classList(node) {
return node.classList || new ClassList(node);
}
function ClassList(node) {
this._node = node;
this._names = classArray(node.getAttribute("class") || "");
}
ClassList.prototype = {
add: function(name) {
var i = this._names.indexOf(name);
if (i < 0) {
this._names.push(name);
this._node.setAttribute("class", this._names.join(" "));
}
},
remove: function(name) {
var i = this._names.indexOf(name);
if (i >= 0) {
this._names.splice(i, 1);
this._node.setAttribute("class", this._names.join(" "));
}
},
contains: function(name) {
return this._names.indexOf(name) >= 0;
}
};
function classedAdd(node, names) {
var list = classList(node), i = -1, n = names.length;
while (++i < n) list.add(names[i]);
}
function classedRemove(node, names) {
var list = classList(node), i = -1, n = names.length;
while (++i < n) list.remove(names[i]);
}
function classedTrue(names) {
return function() {
classedAdd(this, names);
};
}
function classedFalse(names) {
return function() {
classedRemove(this, names);
};
}
function classedFunction(names, value) {
return function() {
(value.apply(this, arguments) ? classedAdd : classedRemove)(this, names);
};
}
function selection_classed(name, value) {
var names = classArray(name + "");
if (arguments.length < 2) {
var list = classList(this.node()), i = -1, n = names.length;
while (++i < n) if (!list.contains(names[i])) return false;
return true;
}
return this.each((typeof value === "function"
? classedFunction : value
? classedTrue
: classedFalse)(names, value));
}
function textRemove() {
this.textContent = "";
}
function textConstant$1(value) {
return function() {
this.textContent = value;
};
}
function textFunction$1(value) {
return function() {
var v = value.apply(this, arguments);
this.textContent = v == null ? "" : v;
};
}
function selection_text(value) {
return arguments.length
? this.each(value == null
? textRemove : (typeof value === "function"
? textFunction$1
: textConstant$1)(value))
: this.node().textContent;
}
function htmlRemove() {
this.innerHTML = "";
}
function htmlConstant(value) {
return function() {
this.innerHTML = value;
};
}
function htmlFunction(value) {
return function() {
var v = value.apply(this, arguments);
this.innerHTML = v == null ? "" : v;
};
}
function selection_html(value) {
return arguments.length
? this.each(value == null
? htmlRemove : (typeof value === "function"
? htmlFunction
: htmlConstant)(value))
: this.node().innerHTML;
}
function raise() {
if (this.nextSibling) this.parentNode.appendChild(this);
}
function selection_raise() {
return this.each(raise);
}
function lower() {
if (this.previousSibling) this.parentNode.insertBefore(this, this.parentNode.firstChild);
}
function selection_lower() {
return this.each(lower);
}
function selection_append(name) {
var create = typeof name === "function" ? name : creator(name);
return this.select(function() {
return this.appendChild(create.apply(this, arguments));
});
}
function constantNull() {
return null;
}
function selection_insert(name, before) {
var create = typeof name === "function" ? name : creator(name),
select = before == null ? constantNull : typeof before === "function" ? before : selector(before);
return this.select(function() {
return this.insertBefore(create.apply(this, arguments), select.apply(this, arguments) || null);
});
}
function remove() {
var parent = this.parentNode;
if (parent) parent.removeChild(this);
}
function selection_remove() {
return this.each(remove);
}
function selection_cloneShallow() {
var clone = this.cloneNode(false), parent = this.parentNode;
return parent ? parent.insertBefore(clone, this.nextSibling) : clone;
}
function selection_cloneDeep() {
var clone = this.cloneNode(true), parent = this.parentNode;
return parent ? parent.insertBefore(clone, this.nextSibling) : clone;
}
function selection_clone(deep) {
return this.select(deep ? selection_cloneDeep : selection_cloneShallow);
}
function selection_datum(value) {
return arguments.length
? this.property("__data__", value)
: this.node().__data__;
}
function contextListener(listener) {
return function(event) {
listener.call(this, event, this.__data__);
};
}
function parseTypenames(typenames) {
return typenames.trim().split(/^|\s+/).map(function(t) {
var name = "", i = t.indexOf(".");
if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i);
return {type: t, name: name};
});
}
function onRemove(typename) {
return function() {
var on = this.__on;
if (!on) return;
for (var j = 0, i = -1, m = on.length, o; j < m; ++j) {
if (o = on[j], (!typename.type || o.type === typename.type) && o.name === typename.name) {
this.removeEventListener(o.type, o.listener, o.options);
} else {
on[++i] = o;
}
}
if (++i) on.length = i;
else delete this.__on;
};
}
function onAdd(typename, value, options) {
return function() {
var on = this.__on, o, listener = contextListener(value);
if (on) for (var j = 0, m = on.length; j < m; ++j) {
if ((o = on[j]).type === typename.type && o.name === typename.name) {
this.removeEventListener(o.type, o.listener, o.options);
this.addEventListener(o.type, o.listener = listener, o.options = options);
o.value = value;
return;
}
}
this.addEventListener(typename.type, listener, options);
o = {type: typename.type, name: typename.name, value: value, listener: listener, options: options};
if (!on) this.__on = [o];
else on.push(o);
};
}
function selection_on(typename, value, options) {
var typenames = parseTypenames(typename + ""), i, n = typenames.length, t;
if (arguments.length < 2) {
var on = this.node().__on;
if (on) for (var j = 0, m = on.length, o; j < m; ++j) {
for (i = 0, o = on[j]; i < n; ++i) {
if ((t = typenames[i]).type === o.type && t.name === o.name) {
return o.value;
}
}
}
return;
}
on = value ? onAdd : onRemove;
for (i = 0; i < n; ++i) this.each(on(typenames[i], value, options));
return this;
}
function dispatchEvent(node, type, params) {
var window = defaultView(node),
event = window.CustomEvent;
if (typeof event === "function") {
event = new event(type, params);
} else {
event = window.document.createEvent("Event");
if (params) event.initEvent(type, params.bubbles, params.cancelable), event.detail = params.detail;
else event.initEvent(type, false, false);
}
node.dispatchEvent(event);
}
function dispatchConstant(type, params) {
return function() {
return dispatchEvent(this, type, params);
};
}
function dispatchFunction(type, params) {
return function() {
return dispatchEvent(this, type, params.apply(this, arguments));
};
}
function selection_dispatch(type, params) {
return this.each((typeof params === "function"
? dispatchFunction
: dispatchConstant)(type, params));
}
function* selection_iterator() {
for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) {
for (var group = groups[j], i = 0, n = group.length, node; i < n; ++i) {
if (node = group[i]) yield node;
}
}
}
var root$1 = [null];
function Selection$1(groups, parents) {
this._groups = groups;
this._parents = parents;
}
function selection() {
return new Selection$1([[document.documentElement]], root$1);
}
function selection_selection() {
return this;
}
Selection$1.prototype = selection.prototype = {
constructor: Selection$1,
select: selection_select,
selectAll: selection_selectAll,
selectChild: selection_selectChild,
selectChildren: selection_selectChildren,
filter: selection_filter,
data: selection_data,
enter: selection_enter,
exit: selection_exit,
join: selection_join,
merge: selection_merge,
selection: selection_selection,
order: selection_order,
sort: selection_sort,
call: selection_call,
nodes: selection_nodes,
node: selection_node,
size: selection_size,
empty: selection_empty,
each: selection_each,
attr: selection_attr,
style: selection_style,
property: selection_property,
classed: selection_classed,
text: selection_text,
html: selection_html,
raise: selection_raise,
lower: selection_lower,
append: selection_append,
insert: selection_insert,
remove: selection_remove,
clone: selection_clone,
datum: selection_datum,
on: selection_on,
dispatch: selection_dispatch,
[Symbol.iterator]: selection_iterator
};
function select(selector) {
return typeof selector === "string"
? new Selection$1([[document.querySelector(selector)]], [document.documentElement])
: new Selection$1([[selector]], root$1);
}
function create$1(name) {
return select(creator(name).call(document.documentElement));
}
var nextId = 0;
function local$1() {
return new Local;
}
function Local() {
this._ = "@" + (++nextId).toString(36);
}
Local.prototype = local$1.prototype = {
constructor: Local,
get: function(node) {
var id = this._;
while (!(id in node)) if (!(node = node.parentNode)) return;
return node[id];
},
set: function(node, value) {
return node[this._] = value;
},
remove: function(node) {
return this._ in node && delete node[this._];
},
toString: function() {
return this._;
}
};
function sourceEvent(event) {
let sourceEvent;
while (sourceEvent = event.sourceEvent) event = sourceEvent;
return event;
}
function pointer(event, node) {
event = sourceEvent(event);
if (node === undefined) node = event.currentTarget;
if (node) {
var svg = node.ownerSVGElement || node;
if (svg.createSVGPoint) {
var point = svg.createSVGPoint();
point.x = event.clientX, point.y = event.clientY;
point = point.matrixTransform(node.getScreenCTM().inverse());
return [point.x, point.y];
}
if (node.getBoundingClientRect) {
var rect = node.getBoundingClientRect();
return [event.clientX - rect.left - node.clientLeft, event.clientY - rect.top - node.clientTop];
}
}
return [event.pageX, event.pageY];
}
function pointers(events, node) {
if (events.target) { // i.e., instanceof Event, not TouchList or iterable
events = sourceEvent(events);
if (node === undefined) node = events.currentTarget;
events = events.touches || [events];
}
return Array.from(events, event => pointer(event, node));
}
function selectAll(selector) {
return typeof selector === "string"
? new Selection$1([document.querySelectorAll(selector)], [document.documentElement])
: new Selection$1([array$4(selector)], root$1);
}
// These are typically used in conjunction with noevent to ensure that we can
// preventDefault on the event.
const nonpassive = {passive: false};
const nonpassivecapture = {capture: true, passive: false};
function nopropagation$2(event) {
event.stopImmediatePropagation();
}
function noevent$2(event) {
event.preventDefault();
event.stopImmediatePropagation();
}
function dragDisable(view) {
var root = view.document.documentElement,
selection = select(view).on("dragstart.drag", noevent$2, nonpassivecapture);
if ("onselectstart" in root) {
selection.on("selectstart.drag", noevent$2, nonpassivecapture);
} else {
root.__noselect = root.style.MozUserSelect;
root.style.MozUserSelect = "none";
}
}
function yesdrag(view, noclick) {
var root = view.document.documentElement,
selection = select(view).on("dragstart.drag", null);
if (noclick) {
selection.on("click.drag", noevent$2, nonpassivecapture);
setTimeout(function() { selection.on("click.drag", null); }, 0);
}
if ("onselectstart" in root) {
selection.on("selectstart.drag", null);
} else {
root.style.MozUserSelect = root.__noselect;
delete root.__noselect;
}
}
var constant$9 = x => () => x;
function DragEvent(type, {
sourceEvent,
subject,
target,
identifier,
active,
x, y, dx, dy,
dispatch
}) {
Object.defineProperties(this, {
type: {value: type, enumerable: true, configurable: true},
sourceEvent: {value: sourceEvent, enumerable: true, configurable: true},
subject: {value: subject, enumerable: true, configurable: true},
target: {value: target, enumerable: true, configurable: true},
identifier: {value: identifier, enumerable: true, configurable: true},
active: {value: active, enumerable: true, configurable: true},
x: {value: x, enumerable: true, configurable: true},
y: {value: y, enumerable: true, configurable: true},
dx: {value: dx, enumerable: true, configurable: true},
dy: {value: dy, enumerable: true, configurable: true},
_: {value: dispatch}
});
}
DragEvent.prototype.on = function() {
var value = this._.on.apply(this._, arguments);
return value === this._ ? this : value;
};
// Ignore right-click, since that should open the context menu.
function defaultFilter$2(event) {
return !event.ctrlKey && !event.button;
}
function defaultContainer() {
return this.parentNode;
}
function defaultSubject(event, d) {
return d == null ? {x: event.x, y: event.y} : d;
}
function defaultTouchable$2() {
return navigator.maxTouchPoints || ("ontouchstart" in this);
}
function drag() {
var filter = defaultFilter$2,
container = defaultContainer,
subject = defaultSubject,
touchable = defaultTouchable$2,
gestures = {},
listeners = dispatch("start", "drag", "end"),
active = 0,
mousedownx,
mousedowny,
mousemoving,
touchending,
clickDistance2 = 0;
function drag(selection) {
selection
.on("mousedown.drag", mousedowned)
.filter(touchable)
.on("touchstart.drag", touchstarted)
.on("touchmove.drag", touchmoved, nonpassive)
.on("touchend.drag touchcancel.drag", touchended)
.style("touch-action", "none")
.style("-webkit-tap-highlight-color", "rgba(0,0,0,0)");
}
function mousedowned(event, d) {
if (touchending || !filter.call(this, event, d)) return;
var gesture = beforestart(this, container.call(this, event, d), event, d, "mouse");
if (!gesture) return;
select(event.view)
.on("mousemove.drag", mousemoved, nonpassivecapture)
.on("mouseup.drag", mouseupped, nonpassivecapture);
dragDisable(event.view);
nopropagation$2(event);
mousemoving = false;
mousedownx = event.clientX;
mousedowny = event.clientY;
gesture("start", event);
}
function mousemoved(event) {
noevent$2(event);
if (!mousemoving) {
var dx = event.clientX - mousedownx, dy = event.clientY - mousedowny;
mousemoving = dx * dx + dy * dy > clickDistance2;
}
gestures.mouse("drag", event);
}
function mouseupped(event) {
select(event.view).on("mousemove.drag mouseup.drag", null);
yesdrag(event.view, mousemoving);
noevent$2(event);
gestures.mouse("end", event);
}
function touchstarted(event, d) {
if (!filter.call(this, event, d)) return;
var touches = event.changedTouches,
c = container.call(this, event, d),
n = touches.length, i, gesture;
for (i = 0; i < n; ++i) {
if (gesture = beforestart(this, c, event, d, touches[i].identifier, touches[i])) {
nopropagation$2(event);
gesture("start", event, touches[i]);
}
}
}
function touchmoved(event) {
var touches = event.changedTouches,
n = touches.length, i, gesture;
for (i = 0; i < n; ++i) {
if (gesture = gestures[touches[i].identifier]) {
noevent$2(event);
gesture("drag", event, touches[i]);
}
}
}
function touchended(event) {
var touches = event.changedTouches,
n = touches.length, i, gesture;
if (touchending) clearTimeout(touchending);
touchending = setTimeout(function() { touchending = null; }, 500); // Ghost clicks are delayed!
for (i = 0; i < n; ++i) {
if (gesture = gestures[touches[i].identifier]) {
nopropagation$2(event);
gesture("end", event, touches[i]);
}
}
}
function beforestart(that, container, event, d, identifier, touch) {
var dispatch = listeners.copy(),
p = pointer(touch || event, container), dx, dy,
s;
if ((s = subject.call(that, new DragEvent("beforestart", {
sourceEvent: event,
target: drag,
identifier,
active,
x: p[0],
y: p[1],
dx: 0,
dy: 0,
dispatch
}), d)) == null) return;
dx = s.x - p[0] || 0;
dy = s.y - p[1] || 0;
return function gesture(type, event, touch) {
var p0 = p, n;
switch (type) {
case "start": gestures[identifier] = gesture, n = active++; break;
case "end": delete gestures[identifier], --active; // falls through
case "drag": p = pointer(touch || event, container), n = active; break;
}
dispatch.call(
type,
that,
new DragEvent(type, {
sourceEvent: event,
subject: s,
target: drag,
identifier,
active: n,
x: p[0] + dx,
y: p[1] + dy,
dx: p[0] - p0[0],
dy: p[1] - p0[1],
dispatch
}),
d
);
};
}
drag.filter = function(_) {
return arguments.length ? (filter = typeof _ === "function" ? _ : constant$9(!!_), drag) : filter;
};
drag.container = function(_) {
return arguments.length ? (container = typeof _ === "function" ? _ : constant$9(_), drag) : container;
};
drag.subject = function(_) {
return arguments.length ? (subject = typeof _ === "function" ? _ : constant$9(_), drag) : subject;
};
drag.touchable = function(_) {
return arguments.length ? (touchable = typeof _ === "function" ? _ : constant$9(!!_), drag) : touchable;
};
drag.on = function() {
var value = listeners.on.apply(listeners, arguments);
return value === listeners ? drag : value;
};
drag.clickDistance = function(_) {
return arguments.length ? (clickDistance2 = (_ = +_) * _, drag) : Math.sqrt(clickDistance2);
};
return drag;
}
function define(constructor, factory, prototype) {
constructor.prototype = factory.prototype = prototype;
prototype.constructor = constructor;
}
function extend(parent, definition) {
var prototype = Object.create(parent.prototype);
for (var key in definition) prototype[key] = definition[key];
return prototype;
}
function Color() {}
var darker = 0.7;
var brighter = 1 / darker;
var reI = "\\s*([+-]?\\d+)\\s*",
reN = "\\s*([+-]?(?:\\d*\\.)?\\d+(?:[eE][+-]?\\d+)?)\\s*",
reP = "\\s*([+-]?(?:\\d*\\.)?\\d+(?:[eE][+-]?\\d+)?)%\\s*",
reHex = /^#([0-9a-f]{3,8})$/,
reRgbInteger = new RegExp(`^rgb\\(${reI},${reI},${reI}\\)$`),
reRgbPercent = new RegExp(`^rgb\\(${reP},${reP},${reP}\\)$`),
reRgbaInteger = new RegExp(`^rgba\\(${reI},${reI},${reI},${reN}\\)$`),
reRgbaPercent = new RegExp(`^rgba\\(${reP},${reP},${reP},${reN}\\)$`),
reHslPercent = new RegExp(`^hsl\\(${reN},${reP},${reP}\\)$`),
reHslaPercent = new RegExp(`^hsla\\(${reN},${reP},${reP},${reN}\\)$`);
var named = {
aliceblue: 0xf0f8ff,
antiquewhite: 0xfaebd7,
aqua: 0x00ffff,
aquamarine: 0x7fffd4,
azure: 0xf0ffff,
beige: 0xf5f5dc,
bisque: 0xffe4c4,
black: 0x000000,
blanchedalmond: 0xffebcd,
blue: 0x0000ff,
blueviolet: 0x8a2be2,
brown: 0xa52a2a,
burlywood: 0xdeb887,
cadetblue: 0x5f9ea0,
chartreuse: 0x7fff00,
chocolate: 0xd2691e,
coral: 0xff7f50,
cornflowerblue: 0x6495ed,
cornsilk: 0xfff8dc,
crimson: 0xdc143c,
cyan: 0x00ffff,
darkblue: 0x00008b,
darkcyan: 0x008b8b,
darkgoldenrod: 0xb8860b,
darkgray: 0xa9a9a9,
darkgreen: 0x006400,
darkgrey: 0xa9a9a9,
darkkhaki: 0xbdb76b,
darkmagenta: 0x8b008b,
darkolivegreen: 0x556b2f,
darkorange: 0xff8c00,
darkorchid: 0x9932cc,
darkred: 0x8b0000,
darksalmon: 0xe9967a,
darkseagreen: 0x8fbc8f,
darkslateblue: 0x483d8b,
darkslategray: 0x2f4f4f,
darkslategrey: 0x2f4f4f,
darkturquoise: 0x00ced1,
darkviolet: 0x9400d3,
deeppink: 0xff1493,
deepskyblue: 0x00bfff,
dimgray: 0x696969,
dimgrey: 0x696969,
dodgerblue: 0x1e90ff,
firebrick: 0xb22222,
floralwhite: 0xfffaf0,
forestgreen: 0x228b22,
fuchsia: 0xff00ff,
gainsboro: 0xdcdcdc,
ghostwhite: 0xf8f8ff,
gold: 0xffd700,
goldenrod: 0xdaa520,
gray: 0x808080,
green: 0x008000,
greenyellow: 0xadff2f,
grey: 0x808080,
honeydew: 0xf0fff0,
hotpink: 0xff69b4,
indianred: 0xcd5c5c,
indigo: 0x4b0082,
ivory: 0xfffff0,
khaki: 0xf0e68c,
lavender: 0xe6e6fa,
lavenderblush: 0xfff0f5,
lawngreen: 0x7cfc00,
lemonchiffon: 0xfffacd,
lightblue: 0xadd8e6,
lightcoral: 0xf08080,
lightcyan: 0xe0ffff,
lightgoldenrodyellow: 0xfafad2,
lightgray: 0xd3d3d3,
lightgreen: 0x90ee90,
lightgrey: 0xd3d3d3,
lightpink: 0xffb6c1,
lightsalmon: 0xffa07a,
lightseagreen: 0x20b2aa,
lightskyblue: 0x87cefa,
lightslategray: 0x778899,
lightslategrey: 0x778899,
lightsteelblue: 0xb0c4de,
lightyellow: 0xffffe0,
lime: 0x00ff00,
limegreen: 0x32cd32,
linen: 0xfaf0e6,
magenta: 0xff00ff,
maroon: 0x800000,
mediumaquamarine: 0x66cdaa,
mediumblue: 0x0000cd,
mediumorchid: 0xba55d3,
mediumpurple: 0x9370db,
mediumseagreen: 0x3cb371,
mediumslateblue: 0x7b68ee,
mediumspringgreen: 0x00fa9a,
mediumturquoise: 0x48d1cc,
mediumvioletred: 0xc71585,
midnightblue: 0x191970,
mintcream: 0xf5fffa,
mistyrose: 0xffe4e1,
moccasin: 0xffe4b5,
navajowhite: 0xffdead,
navy: 0x000080,
oldlace: 0xfdf5e6,
olive: 0x808000,
olivedrab: 0x6b8e23,
orange: 0xffa500,
orangered: 0xff4500,
orchid: 0xda70d6,
palegoldenrod: 0xeee8aa,
palegreen: 0x98fb98,
paleturquoise: 0xafeeee,
palevioletred: 0xdb7093,
papayawhip: 0xffefd5,
peachpuff: 0xffdab9,
peru: 0xcd853f,
pink: 0xffc0cb,
plum: 0xdda0dd,
powderblue: 0xb0e0e6,
purple: 0x800080,
rebeccapurple: 0x663399,
red: 0xff0000,
rosybrown: 0xbc8f8f,
royalblue: 0x4169e1,
saddlebrown: 0x8b4513,
salmon: 0xfa8072,
sandybrown: 0xf4a460,
seagreen: 0x2e8b57,
seashell: 0xfff5ee,
sienna: 0xa0522d,
silver: 0xc0c0c0,
skyblue: 0x87ceeb,
slateblue: 0x6a5acd,
slategray: 0x708090,
slategrey: 0x708090,
snow: 0xfffafa,
springgreen: 0x00ff7f,
steelblue: 0x4682b4,
tan: 0xd2b48c,
teal: 0x008080,
thistle: 0xd8bfd8,
tomato: 0xff6347,
turquoise: 0x40e0d0,
violet: 0xee82ee,
wheat: 0xf5deb3,
white: 0xffffff,
whitesmoke: 0xf5f5f5,
yellow: 0xffff00,
yellowgreen: 0x9acd32
};
define(Color, color, {
copy(channels) {
return Object.assign(new this.constructor, this, channels);
},
displayable() {
return this.rgb().displayable();
},
hex: color_formatHex, // Deprecated! Use color.formatHex.
formatHex: color_formatHex,
formatHex8: color_formatHex8,
formatHsl: color_formatHsl,
formatRgb: color_formatRgb,
toString: color_formatRgb
});
function color_formatHex() {
return this.rgb().formatHex();
}
function color_formatHex8() {
return this.rgb().formatHex8();
}
function color_formatHsl() {
return hslConvert(this).formatHsl();
}
function color_formatRgb() {
return this.rgb().formatRgb();
}
function color(format) {
var m, l;
format = (format + "").trim().toLowerCase();
return (m = reHex.exec(format)) ? (l = m[1].length, m = parseInt(m[1], 16), l === 6 ? rgbn(m) // #ff0000
: l === 3 ? new Rgb((m >> 8 & 0xf) | (m >> 4 & 0xf0), (m >> 4 & 0xf) | (m & 0xf0), ((m & 0xf) << 4) | (m & 0xf), 1) // #f00
: l === 8 ? rgba(m >> 24 & 0xff, m >> 16 & 0xff, m >> 8 & 0xff, (m & 0xff) / 0xff) // #ff000000
: l === 4 ? rgba((m >> 12 & 0xf) | (m >> 8 & 0xf0), (m >> 8 & 0xf) | (m >> 4 & 0xf0), (m >> 4 & 0xf) | (m & 0xf0), (((m & 0xf) << 4) | (m & 0xf)) / 0xff) // #f000
: null) // invalid hex
: (m = reRgbInteger.exec(format)) ? new Rgb(m[1], m[2], m[3], 1) // rgb(255, 0, 0)
: (m = reRgbPercent.exec(format)) ? new Rgb(m[1] * 255 / 100, m[2] * 255 / 100, m[3] * 255 / 100, 1) // rgb(100%, 0%, 0%)
: (m = reRgbaInteger.exec(format)) ? rgba(m[1], m[2], m[3], m[4]) // rgba(255, 0, 0, 1)
: (m = reRgbaPercent.exec(format)) ? rgba(m[1] * 255 / 100, m[2] * 255 / 100, m[3] * 255 / 100, m[4]) // rgb(100%, 0%, 0%, 1)
: (m = reHslPercent.exec(format)) ? hsla(m[1], m[2] / 100, m[3] / 100, 1) // hsl(120, 50%, 50%)
: (m = reHslaPercent.exec(format)) ? hsla(m[1], m[2] / 100, m[3] / 100, m[4]) // hsla(120, 50%, 50%, 1)
: named.hasOwnProperty(format) ? rgbn(named[format]) // eslint-disable-line no-prototype-builtins
: format === "transparent" ? new Rgb(NaN, NaN, NaN, 0)
: null;
}
function rgbn(n) {
return new Rgb(n >> 16 & 0xff, n >> 8 & 0xff, n & 0xff, 1);
}
function rgba(r, g, b, a) {
if (a <= 0) r = g = b = NaN;
return new Rgb(r, g, b, a);
}
function rgbConvert(o) {
if (!(o instanceof Color)) o = color(o);
if (!o) return new Rgb;
o = o.rgb();
return new Rgb(o.r, o.g, o.b, o.opacity);
}
function rgb(r, g, b, opacity) {
return arguments.length === 1 ? rgbConvert(r) : new Rgb(r, g, b, opacity == null ? 1 : opacity);
}
function Rgb(r, g, b, opacity) {
this.r = +r;
this.g = +g;
this.b = +b;
this.opacity = +opacity;
}
define(Rgb, rgb, extend(Color, {
brighter(k) {
k = k == null ? brighter : Math.pow(brighter, k);
return new Rgb(this.r * k, this.g * k, this.b * k, this.opacity);
},
darker(k) {
k = k == null ? darker : Math.pow(darker, k);
return new Rgb(this.r * k, this.g * k, this.b * k, this.opacity);
},
rgb() {
return this;
},
clamp() {
return new Rgb(clampi(this.r), clampi(this.g), clampi(this.b), clampa(this.opacity));
},
displayable() {
return (-0.5 <= this.r && this.r < 255.5)
&& (-0.5 <= this.g && this.g < 255.5)
&& (-0.5 <= this.b && this.b < 255.5)
&& (0 <= this.opacity && this.opacity <= 1);
},
hex: rgb_formatHex, // Deprecated! Use color.formatHex.
formatHex: rgb_formatHex,
formatHex8: rgb_formatHex8,
formatRgb: rgb_formatRgb,
toString: rgb_formatRgb
}));
function rgb_formatHex() {
return `#${hex(this.r)}${hex(this.g)}${hex(this.b)}`;
}
function rgb_formatHex8() {
return `#${hex(this.r)}${hex(this.g)}${hex(this.b)}${hex((isNaN(this.opacity) ? 1 : this.opacity) * 255)}`;
}
function rgb_formatRgb() {
const a = clampa(this.opacity);
return `${a === 1 ? "rgb(" : "rgba("}${clampi(this.r)}, ${clampi(this.g)}, ${clampi(this.b)}${a === 1 ? ")" : `, ${a})`}`;
}
function clampa(opacity) {
return isNaN(opacity) ? 1 : Math.max(0, Math.min(1, opacity));
}
function clampi(value) {
return Math.max(0, Math.min(255, Math.round(value) || 0));
}
function hex(value) {
value = clampi(value);
return (value < 16 ? "0" : "") + value.toString(16);
}
function hsla(h, s, l, a) {
if (a <= 0) h = s = l = NaN;
else if (l <= 0 || l >= 1) h = s = NaN;
else if (s <= 0) h = NaN;
return new Hsl(h, s, l, a);
}
function hslConvert(o) {
if (o instanceof Hsl) return new Hsl(o.h, o.s, o.l, o.opacity);
if (!(o instanceof Color)) o = color(o);
if (!o) return new Hsl;
if (o instanceof Hsl) return o;
o = o.rgb();
var r = o.r / 255,
g = o.g / 255,
b = o.b / 255,
min = Math.min(r, g, b),
max = Math.max(r, g, b),
h = NaN,
s = max - min,
l = (max + min) / 2;
if (s) {
if (r === max) h = (g - b) / s + (g < b) * 6;
else if (g === max) h = (b - r) / s + 2;
else h = (r - g) / s + 4;
s /= l < 0.5 ? max + min : 2 - max - min;
h *= 60;
} else {
s = l > 0 && l < 1 ? 0 : h;
}
return new Hsl(h, s, l, o.opacity);
}
function hsl$2(h, s, l, opacity) {
return arguments.length === 1 ? hslConvert(h) : new Hsl(h, s, l, opacity == null ? 1 : opacity);
}
function Hsl(h, s, l, opacity) {
this.h = +h;
this.s = +s;
this.l = +l;
this.opacity = +opacity;
}
define(Hsl, hsl$2, extend(Color, {
brighter(k) {
k = k == null ? brighter : Math.pow(brighter, k);
return new Hsl(this.h, this.s, this.l * k, this.opacity);
},
darker(k) {
k = k == null ? darker : Math.pow(darker, k);
return new Hsl(this.h, this.s, this.l * k, this.opacity);
},
rgb() {
var h = this.h % 360 + (this.h < 0) * 360,
s = isNaN(h) || isNaN(this.s) ? 0 : this.s,
l = this.l,
m2 = l + (l < 0.5 ? l : 1 - l) * s,
m1 = 2 * l - m2;
return new Rgb(
hsl2rgb(h >= 240 ? h - 240 : h + 120, m1, m2),
hsl2rgb(h, m1, m2),
hsl2rgb(h < 120 ? h + 240 : h - 120, m1, m2),
this.opacity
);
},
clamp() {
return new Hsl(clamph(this.h), clampt(this.s), clampt(this.l), clampa(this.opacity));
},
displayable() {
return (0 <= this.s && this.s <= 1 || isNaN(this.s))
&& (0 <= this.l && this.l <= 1)
&& (0 <= this.opacity && this.opacity <= 1);
},
formatHsl() {
const a = clampa(this.opacity);
return `${a === 1 ? "hsl(" : "hsla("}${clamph(this.h)}, ${clampt(this.s) * 100}%, ${clampt(this.l) * 100}%${a === 1 ? ")" : `, ${a})`}`;
}
}));
function clamph(value) {
value = (value || 0) % 360;
return value < 0 ? value + 360 : value;
}
function clampt(value) {
return Math.max(0, Math.min(1, value || 0));
}
/* From FvD 13.37, CSS Color Module Level 3 */
function hsl2rgb(h, m1, m2) {
return (h < 60 ? m1 + (m2 - m1) * h / 60
: h < 180 ? m2
: h < 240 ? m1 + (m2 - m1) * (240 - h) / 60
: m1) * 255;
}
const radians$1 = Math.PI / 180;
const degrees$2 = 180 / Math.PI;
// https://observablehq.com/@mbostock/lab-and-rgb
const K = 18,
Xn = 0.96422,
Yn = 1,
Zn = 0.82521,
t0$1 = 4 / 29,
t1$1 = 6 / 29,
t2 = 3 * t1$1 * t1$1,
t3 = t1$1 * t1$1 * t1$1;
function labConvert(o) {
if (o instanceof Lab) return new Lab(o.l, o.a, o.b, o.opacity);
if (o instanceof Hcl) return hcl2lab(o);
if (!(o instanceof Rgb)) o = rgbConvert(o);
var r = rgb2lrgb(o.r),
g = rgb2lrgb(o.g),
b = rgb2lrgb(o.b),
y = xyz2lab((0.2225045 * r + 0.7168786 * g + 0.0606169 * b) / Yn), x, z;
if (r === g && g === b) x = z = y; else {
x = xyz2lab((0.4360747 * r + 0.3850649 * g + 0.1430804 * b) / Xn);
z = xyz2lab((0.0139322 * r + 0.0971045 * g + 0.7141733 * b) / Zn);
}
return new Lab(116 * y - 16, 500 * (x - y), 200 * (y - z), o.opacity);
}
function gray(l, opacity) {
return new Lab(l, 0, 0, opacity == null ? 1 : opacity);
}
function lab$1(l, a, b, opacity) {
return arguments.length === 1 ? labConvert(l) : new Lab(l, a, b, opacity == null ? 1 : opacity);
}
function Lab(l, a, b, opacity) {
this.l = +l;
this.a = +a;
this.b = +b;
this.opacity = +opacity;
}
define(Lab, lab$1, extend(Color, {
brighter(k) {
return new Lab(this.l + K * (k == null ? 1 : k), this.a, this.b, this.opacity);
},
darker(k) {
return new Lab(this.l - K * (k == null ? 1 : k), this.a, this.b, this.opacity);
},
rgb() {
var y = (this.l + 16) / 116,
x = isNaN(this.a) ? y : y + this.a / 500,
z = isNaN(this.b) ? y : y - this.b / 200;
x = Xn * lab2xyz(x);
y = Yn * lab2xyz(y);
z = Zn * lab2xyz(z);
return new Rgb(
lrgb2rgb( 3.1338561 * x - 1.6168667 * y - 0.4906146 * z),
lrgb2rgb(-0.9787684 * x + 1.9161415 * y + 0.0334540 * z),
lrgb2rgb( 0.0719453 * x - 0.2289914 * y + 1.4052427 * z),
this.opacity
);
}
}));
function xyz2lab(t) {
return t > t3 ? Math.pow(t, 1 / 3) : t / t2 + t0$1;
}
function lab2xyz(t) {
return t > t1$1 ? t * t * t : t2 * (t - t0$1);
}
function lrgb2rgb(x) {
return 255 * (x <= 0.0031308 ? 12.92 * x : 1.055 * Math.pow(x, 1 / 2.4) - 0.055);
}
function rgb2lrgb(x) {
return (x /= 255) <= 0.04045 ? x / 12.92 : Math.pow((x + 0.055) / 1.055, 2.4);
}
function hclConvert(o) {
if (o instanceof Hcl) return new Hcl(o.h, o.c, o.l, o.opacity);
if (!(o instanceof Lab)) o = labConvert(o);
if (o.a === 0 && o.b === 0) return new Hcl(NaN, 0 < o.l && o.l < 100 ? 0 : NaN, o.l, o.opacity);
var h = Math.atan2(o.b, o.a) * degrees$2;
return new Hcl(h < 0 ? h + 360 : h, Math.sqrt(o.a * o.a + o.b * o.b), o.l, o.opacity);
}
function lch(l, c, h, opacity) {
return arguments.length === 1 ? hclConvert(l) : new Hcl(h, c, l, opacity == null ? 1 : opacity);
}
function hcl$2(h, c, l, opacity) {
return arguments.length === 1 ? hclConvert(h) : new Hcl(h, c, l, opacity == null ? 1 : opacity);
}
function Hcl(h, c, l, opacity) {
this.h = +h;
this.c = +c;
this.l = +l;
this.opacity = +opacity;
}
function hcl2lab(o) {
if (isNaN(o.h)) return new Lab(o.l, 0, 0, o.opacity);
var h = o.h * radians$1;
return new Lab(o.l, Math.cos(h) * o.c, Math.sin(h) * o.c, o.opacity);
}
define(Hcl, hcl$2, extend(Color, {
brighter(k) {
return new Hcl(this.h, this.c, this.l + K * (k == null ? 1 : k), this.opacity);
},
darker(k) {
return new Hcl(this.h, this.c, this.l - K * (k == null ? 1 : k), this.opacity);
},
rgb() {
return hcl2lab(this).rgb();
}
}));
var A = -0.14861,
B$1 = +1.78277,
C = -0.29227,
D$1 = -0.90649,
E = +1.97294,
ED = E * D$1,
EB = E * B$1,
BC_DA = B$1 * C - D$1 * A;
function cubehelixConvert(o) {
if (o instanceof Cubehelix) return new Cubehelix(o.h, o.s, o.l, o.opacity);
if (!(o instanceof Rgb)) o = rgbConvert(o);
var r = o.r / 255,
g = o.g / 255,
b = o.b / 255,
l = (BC_DA * b + ED * r - EB * g) / (BC_DA + ED - EB),
bl = b - l,
k = (E * (g - l) - C * bl) / D$1,
s = Math.sqrt(k * k + bl * bl) / (E * l * (1 - l)), // NaN if l=0 or l=1
h = s ? Math.atan2(k, bl) * degrees$2 - 120 : NaN;
return new Cubehelix(h < 0 ? h + 360 : h, s, l, o.opacity);
}
function cubehelix$3(h, s, l, opacity) {
return arguments.length === 1 ? cubehelixConvert(h) : new Cubehelix(h, s, l, opacity == null ? 1 : opacity);
}
function Cubehelix(h, s, l, opacity) {
this.h = +h;
this.s = +s;
this.l = +l;
this.opacity = +opacity;
}
define(Cubehelix, cubehelix$3, extend(Color, {
brighter(k) {
k = k == null ? brighter : Math.pow(brighter, k);
return new Cubehelix(this.h, this.s, this.l * k, this.opacity);
},
darker(k) {
k = k == null ? darker : Math.pow(darker, k);
return new Cubehelix(this.h, this.s, this.l * k, this.opacity);
},
rgb() {
var h = isNaN(this.h) ? 0 : (this.h + 120) * radians$1,
l = +this.l,
a = isNaN(this.s) ? 0 : this.s * l * (1 - l),
cosh = Math.cos(h),
sinh = Math.sin(h);
return new Rgb(
255 * (l + a * (A * cosh + B$1 * sinh)),
255 * (l + a * (C * cosh + D$1 * sinh)),
255 * (l + a * (E * cosh)),
this.opacity
);
}
}));
function basis$1(t1, v0, v1, v2, v3) {
var t2 = t1 * t1, t3 = t2 * t1;
return ((1 - 3 * t1 + 3 * t2 - t3) * v0
+ (4 - 6 * t2 + 3 * t3) * v1
+ (1 + 3 * t1 + 3 * t2 - 3 * t3) * v2
+ t3 * v3) / 6;
}
function basis$2(values) {
var n = values.length - 1;
return function(t) {
var i = t <= 0 ? (t = 0) : t >= 1 ? (t = 1, n - 1) : Math.floor(t * n),
v1 = values[i],
v2 = values[i + 1],
v0 = i > 0 ? values[i - 1] : 2 * v1 - v2,
v3 = i < n - 1 ? values[i + 2] : 2 * v2 - v1;
return basis$1((t - i / n) * n, v0, v1, v2, v3);
};
}
function basisClosed$1(values) {
var n = values.length;
return function(t) {
var i = Math.floor(((t %= 1) < 0 ? ++t : t) * n),
v0 = values[(i + n - 1) % n],
v1 = values[i % n],
v2 = values[(i + 1) % n],
v3 = values[(i + 2) % n];
return basis$1((t - i / n) * n, v0, v1, v2, v3);
};
}
var constant$8 = x => () => x;
function linear$2(a, d) {
return function(t) {
return a + t * d;
};
}
function exponential$1(a, b, y) {
return a = Math.pow(a, y), b = Math.pow(b, y) - a, y = 1 / y, function(t) {
return Math.pow(a + t * b, y);
};
}
function hue$1(a, b) {
var d = b - a;
return d ? linear$2(a, d > 180 || d < -180 ? d - 360 * Math.round(d / 360) : d) : constant$8(isNaN(a) ? b : a);
}
function gamma$1(y) {
return (y = +y) === 1 ? nogamma : function(a, b) {
return b - a ? exponential$1(a, b, y) : constant$8(isNaN(a) ? b : a);
};
}
function nogamma(a, b) {
var d = b - a;
return d ? linear$2(a, d) : constant$8(isNaN(a) ? b : a);
}
var interpolateRgb = (function rgbGamma(y) {
var color = gamma$1(y);
function rgb$1(start, end) {
var r = color((start = rgb(start)).r, (end = rgb(end)).r),
g = color(start.g, end.g),
b = color(start.b, end.b),
opacity = nogamma(start.opacity, end.opacity);
return function(t) {
start.r = r(t);
start.g = g(t);
start.b = b(t);
start.opacity = opacity(t);
return start + "";
};
}
rgb$1.gamma = rgbGamma;
return rgb$1;
})(1);
function rgbSpline(spline) {
return function(colors) {
var n = colors.length,
r = new Array(n),
g = new Array(n),
b = new Array(n),
i, color;
for (i = 0; i < n; ++i) {
color = rgb(colors[i]);
r[i] = color.r || 0;
g[i] = color.g || 0;
b[i] = color.b || 0;
}
r = spline(r);
g = spline(g);
b = spline(b);
color.opacity = 1;
return function(t) {
color.r = r(t);
color.g = g(t);
color.b = b(t);
return color + "";
};
};
}
var rgbBasis = rgbSpline(basis$2);
var rgbBasisClosed = rgbSpline(basisClosed$1);
function numberArray(a, b) {
if (!b) b = [];
var n = a ? Math.min(b.length, a.length) : 0,
c = b.slice(),
i;
return function(t) {
for (i = 0; i < n; ++i) c[i] = a[i] * (1 - t) + b[i] * t;
return c;
};
}
function isNumberArray(x) {
return ArrayBuffer.isView(x) && !(x instanceof DataView);
}
function array$3(a, b) {
return (isNumberArray(b) ? numberArray : genericArray)(a, b);
}
function genericArray(a, b) {
var nb = b ? b.length : 0,
na = a ? Math.min(nb, a.length) : 0,
x = new Array(na),
c = new Array(nb),
i;
for (i = 0; i < na; ++i) x[i] = interpolate$2(a[i], b[i]);
for (; i < nb; ++i) c[i] = b[i];
return function(t) {
for (i = 0; i < na; ++i) c[i] = x[i](t);
return c;
};
}
function date$1(a, b) {
var d = new Date;
return a = +a, b = +b, function(t) {
return d.setTime(a * (1 - t) + b * t), d;
};
}
function interpolateNumber(a, b) {
return a = +a, b = +b, function(t) {
return a * (1 - t) + b * t;
};
}
function object$1(a, b) {
var i = {},
c = {},
k;
if (a === null || typeof a !== "object") a = {};
if (b === null || typeof b !== "object") b = {};
for (k in b) {
if (k in a) {
i[k] = interpolate$2(a[k], b[k]);
} else {
c[k] = b[k];
}
}
return function(t) {
for (k in i) c[k] = i[k](t);
return c;
};
}
var reA = /[-+]?(?:\d+\.?\d*|\.?\d+)(?:[eE][-+]?\d+)?/g,
reB = new RegExp(reA.source, "g");
function zero(b) {
return function() {
return b;
};
}
function one(b) {
return function(t) {
return b(t) + "";
};
}
function interpolateString(a, b) {
var bi = reA.lastIndex = reB.lastIndex = 0, // scan index for next number in b
am, // current match in a
bm, // current match in b
bs, // string preceding current number in b, if any
i = -1, // index in s
s = [], // string constants and placeholders
q = []; // number interpolators
// Coerce inputs to strings.
a = a + "", b = b + "";
// Interpolate pairs of numbers in a & b.
while ((am = reA.exec(a))
&& (bm = reB.exec(b))) {
if ((bs = bm.index) > bi) { // a string precedes the next number in b
bs = b.slice(bi, bs);
if (s[i]) s[i] += bs; // coalesce with previous string
else s[++i] = bs;
}
if ((am = am[0]) === (bm = bm[0])) { // numbers in a & b match
if (s[i]) s[i] += bm; // coalesce with previous string
else s[++i] = bm;
} else { // interpolate non-matching numbers
s[++i] = null;
q.push({i: i, x: interpolateNumber(am, bm)});
}
bi = reB.lastIndex;
}
// Add remains of b.
if (bi < b.length) {
bs = b.slice(bi);
if (s[i]) s[i] += bs; // coalesce with previous string
else s[++i] = bs;
}
// Special optimization for only a single match.
// Otherwise, interpolate each of the numbers and rejoin the string.
return s.length < 2 ? (q[0]
? one(q[0].x)
: zero(b))
: (b = q.length, function(t) {
for (var i = 0, o; i < b; ++i) s[(o = q[i]).i] = o.x(t);
return s.join("");
});
}
function interpolate$2(a, b) {
var t = typeof b, c;
return b == null || t === "boolean" ? constant$8(b)
: (t === "number" ? interpolateNumber
: t === "string" ? ((c = color(b)) ? (b = c, interpolateRgb) : interpolateString)
: b instanceof color ? interpolateRgb
: b instanceof Date ? date$1
: isNumberArray(b) ? numberArray
: Array.isArray(b) ? genericArray
: typeof b.valueOf !== "function" && typeof b.toString !== "function" || isNaN(b) ? object$1
: interpolateNumber)(a, b);
}
function discrete(range) {
var n = range.length;
return function(t) {
return range[Math.max(0, Math.min(n - 1, Math.floor(t * n)))];
};
}
function hue(a, b) {
var i = hue$1(+a, +b);
return function(t) {
var x = i(t);
return x - 360 * Math.floor(x / 360);
};
}
function interpolateRound(a, b) {
return a = +a, b = +b, function(t) {
return Math.round(a * (1 - t) + b * t);
};
}
var degrees$1 = 180 / Math.PI;
var identity$7 = {
translateX: 0,
translateY: 0,
rotate: 0,
skewX: 0,
scaleX: 1,
scaleY: 1
};
function decompose(a, b, c, d, e, f) {
var scaleX, scaleY, skewX;
if (scaleX = Math.sqrt(a * a + b * b)) a /= scaleX, b /= scaleX;
if (skewX = a * c + b * d) c -= a * skewX, d -= b * skewX;
if (scaleY = Math.sqrt(c * c + d * d)) c /= scaleY, d /= scaleY, skewX /= scaleY;
if (a * d < b * c) a = -a, b = -b, skewX = -skewX, scaleX = -scaleX;
return {
translateX: e,
translateY: f,
rotate: Math.atan2(b, a) * degrees$1,
skewX: Math.atan(skewX) * degrees$1,
scaleX: scaleX,
scaleY: scaleY
};
}
var svgNode;
/* eslint-disable no-undef */
function parseCss(value) {
const m = new (typeof DOMMatrix === "function" ? DOMMatrix : WebKitCSSMatrix)(value + "");
return m.isIdentity ? identity$7 : decompose(m.a, m.b, m.c, m.d, m.e, m.f);
}
function parseSvg(value) {
if (value == null) return identity$7;
if (!svgNode) svgNode = document.createElementNS("http://www.w3.org/2000/svg", "g");
svgNode.setAttribute("transform", value);
if (!(value = svgNode.transform.baseVal.consolidate())) return identity$7;
value = value.matrix;
return decompose(value.a, value.b, value.c, value.d, value.e, value.f);
}
function interpolateTransform(parse, pxComma, pxParen, degParen) {
function pop(s) {
return s.length ? s.pop() + " " : "";
}
function translate(xa, ya, xb, yb, s, q) {
if (xa !== xb || ya !== yb) {
var i = s.push("translate(", null, pxComma, null, pxParen);
q.push({i: i - 4, x: interpolateNumber(xa, xb)}, {i: i - 2, x: interpolateNumber(ya, yb)});
} else if (xb || yb) {
s.push("translate(" + xb + pxComma + yb + pxParen);
}
}
function rotate(a, b, s, q) {
if (a !== b) {
if (a - b > 180) b += 360; else if (b - a > 180) a += 360; // shortest path
q.push({i: s.push(pop(s) + "rotate(", null, degParen) - 2, x: interpolateNumber(a, b)});
} else if (b) {
s.push(pop(s) + "rotate(" + b + degParen);
}
}
function skewX(a, b, s, q) {
if (a !== b) {
q.push({i: s.push(pop(s) + "skewX(", null, degParen) - 2, x: interpolateNumber(a, b)});
} else if (b) {
s.push(pop(s) + "skewX(" + b + degParen);
}
}
function scale(xa, ya, xb, yb, s, q) {
if (xa !== xb || ya !== yb) {
var i = s.push(pop(s) + "scale(", null, ",", null, ")");
q.push({i: i - 4, x: interpolateNumber(xa, xb)}, {i: i - 2, x: interpolateNumber(ya, yb)});
} else if (xb !== 1 || yb !== 1) {
s.push(pop(s) + "scale(" + xb + "," + yb + ")");
}
}
return function(a, b) {
var s = [], // string constants and placeholders
q = []; // number interpolators
a = parse(a), b = parse(b);
translate(a.translateX, a.translateY, b.translateX, b.translateY, s, q);
rotate(a.rotate, b.rotate, s, q);
skewX(a.skewX, b.skewX, s, q);
scale(a.scaleX, a.scaleY, b.scaleX, b.scaleY, s, q);
a = b = null; // gc
return function(t) {
var i = -1, n = q.length, o;
while (++i < n) s[(o = q[i]).i] = o.x(t);
return s.join("");
};
};
}
var interpolateTransformCss = interpolateTransform(parseCss, "px, ", "px)", "deg)");
var interpolateTransformSvg = interpolateTransform(parseSvg, ", ", ")", ")");
var epsilon2$1 = 1e-12;
function cosh(x) {
return ((x = Math.exp(x)) + 1 / x) / 2;
}
function sinh(x) {
return ((x = Math.exp(x)) - 1 / x) / 2;
}
function tanh(x) {
return ((x = Math.exp(2 * x)) - 1) / (x + 1);
}
var interpolateZoom = (function zoomRho(rho, rho2, rho4) {
// p0 = [ux0, uy0, w0]
// p1 = [ux1, uy1, w1]
function zoom(p0, p1) {
var ux0 = p0[0], uy0 = p0[1], w0 = p0[2],
ux1 = p1[0], uy1 = p1[1], w1 = p1[2],
dx = ux1 - ux0,
dy = uy1 - uy0,
d2 = dx * dx + dy * dy,
i,
S;
// Special case for u0 ≅ u1.
if (d2 < epsilon2$1) {
S = Math.log(w1 / w0) / rho;
i = function(t) {
return [
ux0 + t * dx,
uy0 + t * dy,
w0 * Math.exp(rho * t * S)
];
};
}
// General case.
else {
var d1 = Math.sqrt(d2),
b0 = (w1 * w1 - w0 * w0 + rho4 * d2) / (2 * w0 * rho2 * d1),
b1 = (w1 * w1 - w0 * w0 - rho4 * d2) / (2 * w1 * rho2 * d1),
r0 = Math.log(Math.sqrt(b0 * b0 + 1) - b0),
r1 = Math.log(Math.sqrt(b1 * b1 + 1) - b1);
S = (r1 - r0) / rho;
i = function(t) {
var s = t * S,
coshr0 = cosh(r0),
u = w0 / (rho2 * d1) * (coshr0 * tanh(rho * s + r0) - sinh(r0));
return [
ux0 + u * dx,
uy0 + u * dy,
w0 * coshr0 / cosh(rho * s + r0)
];
};
}
i.duration = S * 1000 * rho / Math.SQRT2;
return i;
}
zoom.rho = function(_) {
var _1 = Math.max(1e-3, +_), _2 = _1 * _1, _4 = _2 * _2;
return zoomRho(_1, _2, _4);
};
return zoom;
})(Math.SQRT2, 2, 4);
function hsl(hue) {
return function(start, end) {
var h = hue((start = hsl$2(start)).h, (end = hsl$2(end)).h),
s = nogamma(start.s, end.s),
l = nogamma(start.l, end.l),
opacity = nogamma(start.opacity, end.opacity);
return function(t) {
start.h = h(t);
start.s = s(t);
start.l = l(t);
start.opacity = opacity(t);
return start + "";
};
}
}
var hsl$1 = hsl(hue$1);
var hslLong = hsl(nogamma);
function lab(start, end) {
var l = nogamma((start = lab$1(start)).l, (end = lab$1(end)).l),
a = nogamma(start.a, end.a),
b = nogamma(start.b, end.b),
opacity = nogamma(start.opacity, end.opacity);
return function(t) {
start.l = l(t);
start.a = a(t);
start.b = b(t);
start.opacity = opacity(t);
return start + "";
};
}
function hcl(hue) {
return function(start, end) {
var h = hue((start = hcl$2(start)).h, (end = hcl$2(end)).h),
c = nogamma(start.c, end.c),
l = nogamma(start.l, end.l),
opacity = nogamma(start.opacity, end.opacity);
return function(t) {
start.h = h(t);
start.c = c(t);
start.l = l(t);
start.opacity = opacity(t);
return start + "";
};
}
}
var hcl$1 = hcl(hue$1);
var hclLong = hcl(nogamma);
function cubehelix$1(hue) {
return (function cubehelixGamma(y) {
y = +y;
function cubehelix(start, end) {
var h = hue((start = cubehelix$3(start)).h, (end = cubehelix$3(end)).h),
s = nogamma(start.s, end.s),
l = nogamma(start.l, end.l),
opacity = nogamma(start.opacity, end.opacity);
return function(t) {
start.h = h(t);
start.s = s(t);
start.l = l(Math.pow(t, y));
start.opacity = opacity(t);
return start + "";
};
}
cubehelix.gamma = cubehelixGamma;
return cubehelix;
})(1);
}
var cubehelix$2 = cubehelix$1(hue$1);
var cubehelixLong = cubehelix$1(nogamma);
function piecewise(interpolate, values) {
if (values === undefined) values = interpolate, interpolate = interpolate$2;
var i = 0, n = values.length - 1, v = values[0], I = new Array(n < 0 ? 0 : n);
while (i < n) I[i] = interpolate(v, v = values[++i]);
return function(t) {
var i = Math.max(0, Math.min(n - 1, Math.floor(t *= n)));
return I[i](t - i);
};
}
function quantize$1(interpolator, n) {
var samples = new Array(n);
for (var i = 0; i < n; ++i) samples[i] = interpolator(i / (n - 1));
return samples;
}
var frame = 0, // is an animation frame pending?
timeout$1 = 0, // is a timeout pending?
interval$1 = 0, // are any timers active?
pokeDelay = 1000, // how frequently we check for clock skew
taskHead,
taskTail,
clockLast = 0,
clockNow = 0,
clockSkew = 0,
clock = typeof performance === "object" && performance.now ? performance : Date,
setFrame = typeof window === "object" && window.requestAnimationFrame ? window.requestAnimationFrame.bind(window) : function(f) { setTimeout(f, 17); };
function now() {
return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew);
}
function clearNow() {
clockNow = 0;
}
function Timer() {
this._call =
this._time =
this._next = null;
}
Timer.prototype = timer.prototype = {
constructor: Timer,
restart: function(callback, delay, time) {
if (typeof callback !== "function") throw new TypeError("callback is not a function");
time = (time == null ? now() : +time) + (delay == null ? 0 : +delay);
if (!this._next && taskTail !== this) {
if (taskTail) taskTail._next = this;
else taskHead = this;
taskTail = this;
}
this._call = callback;
this._time = time;
sleep();
},
stop: function() {
if (this._call) {
this._call = null;
this._time = Infinity;
sleep();
}
}
};
function timer(callback, delay, time) {
var t = new Timer;
t.restart(callback, delay, time);
return t;
}
function timerFlush() {
now(); // Get the current time, if not already set.
++frame; // Pretend weve set an alarm, if we havent already.
var t = taskHead, e;
while (t) {
if ((e = clockNow - t._time) >= 0) t._call.call(undefined, e);
t = t._next;
}
--frame;
}
function wake() {
clockNow = (clockLast = clock.now()) + clockSkew;
frame = timeout$1 = 0;
try {
timerFlush();
} finally {
frame = 0;
nap();
clockNow = 0;
}
}
function poke() {
var now = clock.now(), delay = now - clockLast;
if (delay > pokeDelay) clockSkew -= delay, clockLast = now;
}
function nap() {
var t0, t1 = taskHead, t2, time = Infinity;
while (t1) {
if (t1._call) {
if (time > t1._time) time = t1._time;
t0 = t1, t1 = t1._next;
} else {
t2 = t1._next, t1._next = null;
t1 = t0 ? t0._next = t2 : taskHead = t2;
}
}
taskTail = t0;
sleep(time);
}
function sleep(time) {
if (frame) return; // Soonest alarm already set, or will be.
if (timeout$1) timeout$1 = clearTimeout(timeout$1);
var delay = time - clockNow; // Strictly less than if we recomputed clockNow.
if (delay > 24) {
if (time < Infinity) timeout$1 = setTimeout(wake, time - clock.now() - clockSkew);
if (interval$1) interval$1 = clearInterval(interval$1);
} else {
if (!interval$1) clockLast = clock.now(), interval$1 = setInterval(poke, pokeDelay);
frame = 1, setFrame(wake);
}
}
function timeout(callback, delay, time) {
var t = new Timer;
delay = delay == null ? 0 : +delay;
t.restart(elapsed => {
t.stop();
callback(elapsed + delay);
}, delay, time);
return t;
}
function interval(callback, delay, time) {
var t = new Timer, total = delay;
if (delay == null) return t.restart(callback, delay, time), t;
t._restart = t.restart;
t.restart = function(callback, delay, time) {
delay = +delay, time = time == null ? now() : +time;
t._restart(function tick(elapsed) {
elapsed += total;
t._restart(tick, total += delay, time);
callback(elapsed);
}, delay, time);
};
t.restart(callback, delay, time);
return t;
}
var emptyOn = dispatch("start", "end", "cancel", "interrupt");
var emptyTween = [];
var CREATED = 0;
var SCHEDULED = 1;
var STARTING = 2;
var STARTED = 3;
var RUNNING = 4;
var ENDING = 5;
var ENDED = 6;
function schedule(node, name, id, index, group, timing) {
var schedules = node.__transition;
if (!schedules) node.__transition = {};
else if (id in schedules) return;
create(node, id, {
name: name,
index: index, // For context during callback.
group: group, // For context during callback.
on: emptyOn,
tween: emptyTween,
time: timing.time,
delay: timing.delay,
duration: timing.duration,
ease: timing.ease,
timer: null,
state: CREATED
});
}
function init(node, id) {
var schedule = get(node, id);
if (schedule.state > CREATED) throw new Error("too late; already scheduled");
return schedule;
}
function set(node, id) {
var schedule = get(node, id);
if (schedule.state > STARTED) throw new Error("too late; already running");
return schedule;
}
function get(node, id) {
var schedule = node.__transition;
if (!schedule || !(schedule = schedule[id])) throw new Error("transition not found");
return schedule;
}
function create(node, id, self) {
var schedules = node.__transition,
tween;
// Initialize the self timer when the transition is created.
// Note the actual delay is not known until the first callback!
schedules[id] = self;
self.timer = timer(schedule, 0, self.time);
function schedule(elapsed) {
self.state = SCHEDULED;
self.timer.restart(start, self.delay, self.time);
// If the elapsed delay is less than our first sleep, start immediately.
if (self.delay <= elapsed) start(elapsed - self.delay);
}
function start(elapsed) {
var i, j, n, o;
// If the state is not SCHEDULED, then we previously errored on start.
if (self.state !== SCHEDULED) return stop();
for (i in schedules) {
o = schedules[i];
if (o.name !== self.name) continue;
// While this element already has a starting transition during this frame,
// defer starting an interrupting transition until that transition has a
// chance to tick (and possibly end); see d3/d3-transition#54!
if (o.state === STARTED) return timeout(start);
// Interrupt the active transition, if any.
if (o.state === RUNNING) {
o.state = ENDED;
o.timer.stop();
o.on.call("interrupt", node, node.__data__, o.index, o.group);
delete schedules[i];
}
// Cancel any pre-empted transitions.
else if (+i < id) {
o.state = ENDED;
o.timer.stop();
o.on.call("cancel", node, node.__data__, o.index, o.group);
delete schedules[i];
}
}
// Defer the first tick to end of the current frame; see d3/d3#1576.
// Note the transition may be canceled after start and before the first tick!
// Note this must be scheduled before the start event; see d3/d3-transition#16!
// Assuming this is successful, subsequent callbacks go straight to tick.
timeout(function() {
if (self.state === STARTED) {
self.state = RUNNING;
self.timer.restart(tick, self.delay, self.time);
tick(elapsed);
}
});
// Dispatch the start event.
// Note this must be done before the tween are initialized.
self.state = STARTING;
self.on.call("start", node, node.__data__, self.index, self.group);
if (self.state !== STARTING) return; // interrupted
self.state = STARTED;
// Initialize the tween, deleting null tween.
tween = new Array(n = self.tween.length);
for (i = 0, j = -1; i < n; ++i) {
if (o = self.tween[i].value.call(node, node.__data__, self.index, self.group)) {
tween[++j] = o;
}
}
tween.length = j + 1;
}
function tick(elapsed) {
var t = elapsed < self.duration ? self.ease.call(null, elapsed / self.duration) : (self.timer.restart(stop), self.state = ENDING, 1),
i = -1,
n = tween.length;
while (++i < n) {
tween[i].call(node, t);
}
// Dispatch the end event.
if (self.state === ENDING) {
self.on.call("end", node, node.__data__, self.index, self.group);
stop();
}
}
function stop() {
self.state = ENDED;
self.timer.stop();
delete schedules[id];
for (var i in schedules) return; // eslint-disable-line no-unused-vars
delete node.__transition;
}
}
function interrupt(node, name) {
var schedules = node.__transition,
schedule,
active,
empty = true,
i;
if (!schedules) return;
name = name == null ? null : name + "";
for (i in schedules) {
if ((schedule = schedules[i]).name !== name) { empty = false; continue; }
active = schedule.state > STARTING && schedule.state < ENDING;
schedule.state = ENDED;
schedule.timer.stop();
schedule.on.call(active ? "interrupt" : "cancel", node, node.__data__, schedule.index, schedule.group);
delete schedules[i];
}
if (empty) delete node.__transition;
}
function selection_interrupt(name) {
return this.each(function() {
interrupt(this, name);
});
}
function tweenRemove(id, name) {
var tween0, tween1;
return function() {
var schedule = set(this, id),
tween = schedule.tween;
// If this node shared tween with the previous node,
// just assign the updated shared tween and were done!
// Otherwise, copy-on-write.
if (tween !== tween0) {
tween1 = tween0 = tween;
for (var i = 0, n = tween1.length; i < n; ++i) {
if (tween1[i].name === name) {
tween1 = tween1.slice();
tween1.splice(i, 1);
break;
}
}
}
schedule.tween = tween1;
};
}
function tweenFunction(id, name, value) {
var tween0, tween1;
if (typeof value !== "function") throw new Error;
return function() {
var schedule = set(this, id),
tween = schedule.tween;
// If this node shared tween with the previous node,
// just assign the updated shared tween and were done!
// Otherwise, copy-on-write.
if (tween !== tween0) {
tween1 = (tween0 = tween).slice();
for (var t = {name: name, value: value}, i = 0, n = tween1.length; i < n; ++i) {
if (tween1[i].name === name) {
tween1[i] = t;
break;
}
}
if (i === n) tween1.push(t);
}
schedule.tween = tween1;
};
}
function transition_tween(name, value) {
var id = this._id;
name += "";
if (arguments.length < 2) {
var tween = get(this.node(), id).tween;
for (var i = 0, n = tween.length, t; i < n; ++i) {
if ((t = tween[i]).name === name) {
return t.value;
}
}
return null;
}
return this.each((value == null ? tweenRemove : tweenFunction)(id, name, value));
}
function tweenValue(transition, name, value) {
var id = transition._id;
transition.each(function() {
var schedule = set(this, id);
(schedule.value || (schedule.value = {}))[name] = value.apply(this, arguments);
});
return function(node) {
return get(node, id).value[name];
};
}
function interpolate$1(a, b) {
var c;
return (typeof b === "number" ? interpolateNumber
: b instanceof color ? interpolateRgb
: (c = color(b)) ? (b = c, interpolateRgb)
: interpolateString)(a, b);
}
function attrRemove(name) {
return function() {
this.removeAttribute(name);
};
}
function attrRemoveNS(fullname) {
return function() {
this.removeAttributeNS(fullname.space, fullname.local);
};
}
function attrConstant(name, interpolate, value1) {
var string00,
string1 = value1 + "",
interpolate0;
return function() {
var string0 = this.getAttribute(name);
return string0 === string1 ? null
: string0 === string00 ? interpolate0
: interpolate0 = interpolate(string00 = string0, value1);
};
}
function attrConstantNS(fullname, interpolate, value1) {
var string00,
string1 = value1 + "",
interpolate0;
return function() {
var string0 = this.getAttributeNS(fullname.space, fullname.local);
return string0 === string1 ? null
: string0 === string00 ? interpolate0
: interpolate0 = interpolate(string00 = string0, value1);
};
}
function attrFunction(name, interpolate, value) {
var string00,
string10,
interpolate0;
return function() {
var string0, value1 = value(this), string1;
if (value1 == null) return void this.removeAttribute(name);
string0 = this.getAttribute(name);
string1 = value1 + "";
return string0 === string1 ? null
: string0 === string00 && string1 === string10 ? interpolate0
: (string10 = string1, interpolate0 = interpolate(string00 = string0, value1));
};
}
function attrFunctionNS(fullname, interpolate, value) {
var string00,
string10,
interpolate0;
return function() {
var string0, value1 = value(this), string1;
if (value1 == null) return void this.removeAttributeNS(fullname.space, fullname.local);
string0 = this.getAttributeNS(fullname.space, fullname.local);
string1 = value1 + "";
return string0 === string1 ? null
: string0 === string00 && string1 === string10 ? interpolate0
: (string10 = string1, interpolate0 = interpolate(string00 = string0, value1));
};
}
function transition_attr(name, value) {
var fullname = namespace(name), i = fullname === "transform" ? interpolateTransformSvg : interpolate$1;
return this.attrTween(name, typeof value === "function"
? (fullname.local ? attrFunctionNS : attrFunction)(fullname, i, tweenValue(this, "attr." + name, value))
: value == null ? (fullname.local ? attrRemoveNS : attrRemove)(fullname)
: (fullname.local ? attrConstantNS : attrConstant)(fullname, i, value));
}
function attrInterpolate(name, i) {
return function(t) {
this.setAttribute(name, i.call(this, t));
};
}
function attrInterpolateNS(fullname, i) {
return function(t) {
this.setAttributeNS(fullname.space, fullname.local, i.call(this, t));
};
}
function attrTweenNS(fullname, value) {
var t0, i0;
function tween() {
var i = value.apply(this, arguments);
if (i !== i0) t0 = (i0 = i) && attrInterpolateNS(fullname, i);
return t0;
}
tween._value = value;
return tween;
}
function attrTween(name, value) {
var t0, i0;
function tween() {
var i = value.apply(this, arguments);
if (i !== i0) t0 = (i0 = i) && attrInterpolate(name, i);
return t0;
}
tween._value = value;
return tween;
}
function transition_attrTween(name, value) {
var key = "attr." + name;
if (arguments.length < 2) return (key = this.tween(key)) && key._value;
if (value == null) return this.tween(key, null);
if (typeof value !== "function") throw new Error;
var fullname = namespace(name);
return this.tween(key, (fullname.local ? attrTweenNS : attrTween)(fullname, value));
}
function delayFunction(id, value) {
return function() {
init(this, id).delay = +value.apply(this, arguments);
};
}
function delayConstant(id, value) {
return value = +value, function() {
init(this, id).delay = value;
};
}
function transition_delay(value) {
var id = this._id;
return arguments.length
? this.each((typeof value === "function"
? delayFunction
: delayConstant)(id, value))
: get(this.node(), id).delay;
}
function durationFunction(id, value) {
return function() {
set(this, id).duration = +value.apply(this, arguments);
};
}
function durationConstant(id, value) {
return value = +value, function() {
set(this, id).duration = value;
};
}
function transition_duration(value) {
var id = this._id;
return arguments.length
? this.each((typeof value === "function"
? durationFunction
: durationConstant)(id, value))
: get(this.node(), id).duration;
}
function easeConstant(id, value) {
if (typeof value !== "function") throw new Error;
return function() {
set(this, id).ease = value;
};
}
function transition_ease(value) {
var id = this._id;
return arguments.length
? this.each(easeConstant(id, value))
: get(this.node(), id).ease;
}
function easeVarying(id, value) {
return function() {
var v = value.apply(this, arguments);
if (typeof v !== "function") throw new Error;
set(this, id).ease = v;
};
}
function transition_easeVarying(value) {
if (typeof value !== "function") throw new Error;
return this.each(easeVarying(this._id, value));
}
function transition_filter(match) {
if (typeof match !== "function") match = matcher(match);
for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, subgroup = subgroups[j] = [], node, i = 0; i < n; ++i) {
if ((node = group[i]) && match.call(node, node.__data__, i, group)) {
subgroup.push(node);
}
}
}
return new Transition(subgroups, this._parents, this._name, this._id);
}
function transition_merge(transition) {
if (transition._id !== this._id) throw new Error;
for (var groups0 = this._groups, groups1 = transition._groups, m0 = groups0.length, m1 = groups1.length, m = Math.min(m0, m1), merges = new Array(m0), j = 0; j < m; ++j) {
for (var group0 = groups0[j], group1 = groups1[j], n = group0.length, merge = merges[j] = new Array(n), node, i = 0; i < n; ++i) {
if (node = group0[i] || group1[i]) {
merge[i] = node;
}
}
}
for (; j < m0; ++j) {
merges[j] = groups0[j];
}
return new Transition(merges, this._parents, this._name, this._id);
}
function start(name) {
return (name + "").trim().split(/^|\s+/).every(function(t) {
var i = t.indexOf(".");
if (i >= 0) t = t.slice(0, i);
return !t || t === "start";
});
}
function onFunction(id, name, listener) {
var on0, on1, sit = start(name) ? init : set;
return function() {
var schedule = sit(this, id),
on = schedule.on;
// If this node shared a dispatch with the previous node,
// just assign the updated shared dispatch and were done!
// Otherwise, copy-on-write.
if (on !== on0) (on1 = (on0 = on).copy()).on(name, listener);
schedule.on = on1;
};
}
function transition_on(name, listener) {
var id = this._id;
return arguments.length < 2
? get(this.node(), id).on.on(name)
: this.each(onFunction(id, name, listener));
}
function removeFunction(id) {
return function() {
var parent = this.parentNode;
for (var i in this.__transition) if (+i !== id) return;
if (parent) parent.removeChild(this);
};
}
function transition_remove() {
return this.on("end.remove", removeFunction(this._id));
}
function transition_select(select) {
var name = this._name,
id = this._id;
if (typeof select !== "function") select = selector(select);
for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, subgroup = subgroups[j] = new Array(n), node, subnode, i = 0; i < n; ++i) {
if ((node = group[i]) && (subnode = select.call(node, node.__data__, i, group))) {
if ("__data__" in node) subnode.__data__ = node.__data__;
subgroup[i] = subnode;
schedule(subgroup[i], name, id, i, subgroup, get(node, id));
}
}
}
return new Transition(subgroups, this._parents, name, id);
}
function transition_selectAll(select) {
var name = this._name,
id = this._id;
if (typeof select !== "function") select = selectorAll(select);
for (var groups = this._groups, m = groups.length, subgroups = [], parents = [], j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) {
if (node = group[i]) {
for (var children = select.call(node, node.__data__, i, group), child, inherit = get(node, id), k = 0, l = children.length; k < l; ++k) {
if (child = children[k]) {
schedule(child, name, id, k, children, inherit);
}
}
subgroups.push(children);
parents.push(node);
}
}
}
return new Transition(subgroups, parents, name, id);
}
var Selection = selection.prototype.constructor;
function transition_selection() {
return new Selection(this._groups, this._parents);
}
function styleNull(name, interpolate) {
var string00,
string10,
interpolate0;
return function() {
var string0 = styleValue(this, name),
string1 = (this.style.removeProperty(name), styleValue(this, name));
return string0 === string1 ? null
: string0 === string00 && string1 === string10 ? interpolate0
: interpolate0 = interpolate(string00 = string0, string10 = string1);
};
}
function styleRemove(name) {
return function() {
this.style.removeProperty(name);
};
}
function styleConstant(name, interpolate, value1) {
var string00,
string1 = value1 + "",
interpolate0;
return function() {
var string0 = styleValue(this, name);
return string0 === string1 ? null
: string0 === string00 ? interpolate0
: interpolate0 = interpolate(string00 = string0, value1);
};
}
function styleFunction(name, interpolate, value) {
var string00,
string10,
interpolate0;
return function() {
var string0 = styleValue(this, name),
value1 = value(this),
string1 = value1 + "";
if (value1 == null) string1 = value1 = (this.style.removeProperty(name), styleValue(this, name));
return string0 === string1 ? null
: string0 === string00 && string1 === string10 ? interpolate0
: (string10 = string1, interpolate0 = interpolate(string00 = string0, value1));
};
}
function styleMaybeRemove(id, name) {
var on0, on1, listener0, key = "style." + name, event = "end." + key, remove;
return function() {
var schedule = set(this, id),
on = schedule.on,
listener = schedule.value[key] == null ? remove || (remove = styleRemove(name)) : undefined;
// If this node shared a dispatch with the previous node,
// just assign the updated shared dispatch and were done!
// Otherwise, copy-on-write.
if (on !== on0 || listener0 !== listener) (on1 = (on0 = on).copy()).on(event, listener0 = listener);
schedule.on = on1;
};
}
function transition_style(name, value, priority) {
var i = (name += "") === "transform" ? interpolateTransformCss : interpolate$1;
return value == null ? this
.styleTween(name, styleNull(name, i))
.on("end.style." + name, styleRemove(name))
: typeof value === "function" ? this
.styleTween(name, styleFunction(name, i, tweenValue(this, "style." + name, value)))
.each(styleMaybeRemove(this._id, name))
: this
.styleTween(name, styleConstant(name, i, value), priority)
.on("end.style." + name, null);
}
function styleInterpolate(name, i, priority) {
return function(t) {
this.style.setProperty(name, i.call(this, t), priority);
};
}
function styleTween(name, value, priority) {
var t, i0;
function tween() {
var i = value.apply(this, arguments);
if (i !== i0) t = (i0 = i) && styleInterpolate(name, i, priority);
return t;
}
tween._value = value;
return tween;
}
function transition_styleTween(name, value, priority) {
var key = "style." + (name += "");
if (arguments.length < 2) return (key = this.tween(key)) && key._value;
if (value == null) return this.tween(key, null);
if (typeof value !== "function") throw new Error;
return this.tween(key, styleTween(name, value, priority == null ? "" : priority));
}
function textConstant(value) {
return function() {
this.textContent = value;
};
}
function textFunction(value) {
return function() {
var value1 = value(this);
this.textContent = value1 == null ? "" : value1;
};
}
function transition_text(value) {
return this.tween("text", typeof value === "function"
? textFunction(tweenValue(this, "text", value))
: textConstant(value == null ? "" : value + ""));
}
function textInterpolate(i) {
return function(t) {
this.textContent = i.call(this, t);
};
}
function textTween(value) {
var t0, i0;
function tween() {
var i = value.apply(this, arguments);
if (i !== i0) t0 = (i0 = i) && textInterpolate(i);
return t0;
}
tween._value = value;
return tween;
}
function transition_textTween(value) {
var key = "text";
if (arguments.length < 1) return (key = this.tween(key)) && key._value;
if (value == null) return this.tween(key, null);
if (typeof value !== "function") throw new Error;
return this.tween(key, textTween(value));
}
function transition_transition() {
var name = this._name,
id0 = this._id,
id1 = newId();
for (var groups = this._groups, m = groups.length, j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) {
if (node = group[i]) {
var inherit = get(node, id0);
schedule(node, name, id1, i, group, {
time: inherit.time + inherit.delay + inherit.duration,
delay: 0,
duration: inherit.duration,
ease: inherit.ease
});
}
}
}
return new Transition(groups, this._parents, name, id1);
}
function transition_end() {
var on0, on1, that = this, id = that._id, size = that.size();
return new Promise(function(resolve, reject) {
var cancel = {value: reject},
end = {value: function() { if (--size === 0) resolve(); }};
that.each(function() {
var schedule = set(this, id),
on = schedule.on;
// If this node shared a dispatch with the previous node,
// just assign the updated shared dispatch and were done!
// Otherwise, copy-on-write.
if (on !== on0) {
on1 = (on0 = on).copy();
on1._.cancel.push(cancel);
on1._.interrupt.push(cancel);
on1._.end.push(end);
}
schedule.on = on1;
});
// The selection was empty, resolve end immediately
if (size === 0) resolve();
});
}
var id = 0;
function Transition(groups, parents, name, id) {
this._groups = groups;
this._parents = parents;
this._name = name;
this._id = id;
}
function transition(name) {
return selection().transition(name);
}
function newId() {
return ++id;
}
var selection_prototype = selection.prototype;
Transition.prototype = transition.prototype = {
constructor: Transition,
select: transition_select,
selectAll: transition_selectAll,
selectChild: selection_prototype.selectChild,
selectChildren: selection_prototype.selectChildren,
filter: transition_filter,
merge: transition_merge,
selection: transition_selection,
transition: transition_transition,
call: selection_prototype.call,
nodes: selection_prototype.nodes,
node: selection_prototype.node,
size: selection_prototype.size,
empty: selection_prototype.empty,
each: selection_prototype.each,
on: transition_on,
attr: transition_attr,
attrTween: transition_attrTween,
style: transition_style,
styleTween: transition_styleTween,
text: transition_text,
textTween: transition_textTween,
remove: transition_remove,
tween: transition_tween,
delay: transition_delay,
duration: transition_duration,
ease: transition_ease,
easeVarying: transition_easeVarying,
end: transition_end,
[Symbol.iterator]: selection_prototype[Symbol.iterator]
};
const linear$1 = t => +t;
function quadIn(t) {
return t * t;
}
function quadOut(t) {
return t * (2 - t);
}
function quadInOut(t) {
return ((t *= 2) <= 1 ? t * t : --t * (2 - t) + 1) / 2;
}
function cubicIn(t) {
return t * t * t;
}
function cubicOut(t) {
return --t * t * t + 1;
}
function cubicInOut(t) {
return ((t *= 2) <= 1 ? t * t * t : (t -= 2) * t * t + 2) / 2;
}
var exponent$1 = 3;
var polyIn = (function custom(e) {
e = +e;
function polyIn(t) {
return Math.pow(t, e);
}
polyIn.exponent = custom;
return polyIn;
})(exponent$1);
var polyOut = (function custom(e) {
e = +e;
function polyOut(t) {
return 1 - Math.pow(1 - t, e);
}
polyOut.exponent = custom;
return polyOut;
})(exponent$1);
var polyInOut = (function custom(e) {
e = +e;
function polyInOut(t) {
return ((t *= 2) <= 1 ? Math.pow(t, e) : 2 - Math.pow(2 - t, e)) / 2;
}
polyInOut.exponent = custom;
return polyInOut;
})(exponent$1);
var pi$4 = Math.PI,
halfPi$3 = pi$4 / 2;
function sinIn(t) {
return (+t === 1) ? 1 : 1 - Math.cos(t * halfPi$3);
}
function sinOut(t) {
return Math.sin(t * halfPi$3);
}
function sinInOut(t) {
return (1 - Math.cos(pi$4 * t)) / 2;
}
// tpmt is two power minus ten times t scaled to [0,1]
function tpmt(x) {
return (Math.pow(2, -10 * x) - 0.0009765625) * 1.0009775171065494;
}
function expIn(t) {
return tpmt(1 - +t);
}
function expOut(t) {
return 1 - tpmt(t);
}
function expInOut(t) {
return ((t *= 2) <= 1 ? tpmt(1 - t) : 2 - tpmt(t - 1)) / 2;
}
function circleIn(t) {
return 1 - Math.sqrt(1 - t * t);
}
function circleOut(t) {
return Math.sqrt(1 - --t * t);
}
function circleInOut(t) {
return ((t *= 2) <= 1 ? 1 - Math.sqrt(1 - t * t) : Math.sqrt(1 - (t -= 2) * t) + 1) / 2;
}
var b1 = 4 / 11,
b2 = 6 / 11,
b3 = 8 / 11,
b4 = 3 / 4,
b5 = 9 / 11,
b6 = 10 / 11,
b7 = 15 / 16,
b8 = 21 / 22,
b9 = 63 / 64,
b0 = 1 / b1 / b1;
function bounceIn(t) {
return 1 - bounceOut(1 - t);
}
function bounceOut(t) {
return (t = +t) < b1 ? b0 * t * t : t < b3 ? b0 * (t -= b2) * t + b4 : t < b6 ? b0 * (t -= b5) * t + b7 : b0 * (t -= b8) * t + b9;
}
function bounceInOut(t) {
return ((t *= 2) <= 1 ? 1 - bounceOut(1 - t) : bounceOut(t - 1) + 1) / 2;
}
var overshoot = 1.70158;
var backIn = (function custom(s) {
s = +s;
function backIn(t) {
return (t = +t) * t * (s * (t - 1) + t);
}
backIn.overshoot = custom;
return backIn;
})(overshoot);
var backOut = (function custom(s) {
s = +s;
function backOut(t) {
return --t * t * ((t + 1) * s + t) + 1;
}
backOut.overshoot = custom;
return backOut;
})(overshoot);
var backInOut = (function custom(s) {
s = +s;
function backInOut(t) {
return ((t *= 2) < 1 ? t * t * ((s + 1) * t - s) : (t -= 2) * t * ((s + 1) * t + s) + 2) / 2;
}
backInOut.overshoot = custom;
return backInOut;
})(overshoot);
var tau$5 = 2 * Math.PI,
amplitude = 1,
period = 0.3;
var elasticIn = (function custom(a, p) {
var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau$5);
function elasticIn(t) {
return a * tpmt(-(--t)) * Math.sin((s - t) / p);
}
elasticIn.amplitude = function(a) { return custom(a, p * tau$5); };
elasticIn.period = function(p) { return custom(a, p); };
return elasticIn;
})(amplitude, period);
var elasticOut = (function custom(a, p) {
var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau$5);
function elasticOut(t) {
return 1 - a * tpmt(t = +t) * Math.sin((t + s) / p);
}
elasticOut.amplitude = function(a) { return custom(a, p * tau$5); };
elasticOut.period = function(p) { return custom(a, p); };
return elasticOut;
})(amplitude, period);
var elasticInOut = (function custom(a, p) {
var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau$5);
function elasticInOut(t) {
return ((t = t * 2 - 1) < 0
? a * tpmt(-t) * Math.sin((s - t) / p)
: 2 - a * tpmt(t) * Math.sin((s + t) / p)) / 2;
}
elasticInOut.amplitude = function(a) { return custom(a, p * tau$5); };
elasticInOut.period = function(p) { return custom(a, p); };
return elasticInOut;
})(amplitude, period);
var defaultTiming = {
time: null, // Set on use.
delay: 0,
duration: 250,
ease: cubicInOut
};
function inherit(node, id) {
var timing;
while (!(timing = node.__transition) || !(timing = timing[id])) {
if (!(node = node.parentNode)) {
throw new Error(`transition ${id} not found`);
}
}
return timing;
}
function selection_transition(name) {
var id,
timing;
if (name instanceof Transition) {
id = name._id, name = name._name;
} else {
id = newId(), (timing = defaultTiming).time = now(), name = name == null ? null : name + "";
}
for (var groups = this._groups, m = groups.length, j = 0; j < m; ++j) {
for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) {
if (node = group[i]) {
schedule(node, name, id, i, group, timing || inherit(node, id));
}
}
}
return new Transition(groups, this._parents, name, id);
}
selection.prototype.interrupt = selection_interrupt;
selection.prototype.transition = selection_transition;
var root = [null];
function active(node, name) {
var schedules = node.__transition,
schedule,
i;
if (schedules) {
name = name == null ? null : name + "";
for (i in schedules) {
if ((schedule = schedules[i]).state > SCHEDULED && schedule.name === name) {
return new Transition([[node]], root, name, +i);
}
}
}
return null;
}
var constant$7 = x => () => x;
function BrushEvent(type, {
sourceEvent,
target,
selection,
mode,
dispatch
}) {
Object.defineProperties(this, {
type: {value: type, enumerable: true, configurable: true},
sourceEvent: {value: sourceEvent, enumerable: true, configurable: true},
target: {value: target, enumerable: true, configurable: true},
selection: {value: selection, enumerable: true, configurable: true},
mode: {value: mode, enumerable: true, configurable: true},
_: {value: dispatch}
});
}
function nopropagation$1(event) {
event.stopImmediatePropagation();
}
function noevent$1(event) {
event.preventDefault();
event.stopImmediatePropagation();
}
var MODE_DRAG = {name: "drag"},
MODE_SPACE = {name: "space"},
MODE_HANDLE = {name: "handle"},
MODE_CENTER = {name: "center"};
const {abs: abs$3, max: max$2, min: min$1} = Math;
function number1(e) {
return [+e[0], +e[1]];
}
function number2(e) {
return [number1(e[0]), number1(e[1])];
}
var X = {
name: "x",
handles: ["w", "e"].map(type),
input: function(x, e) { return x == null ? null : [[+x[0], e[0][1]], [+x[1], e[1][1]]]; },
output: function(xy) { return xy && [xy[0][0], xy[1][0]]; }
};
var Y = {
name: "y",
handles: ["n", "s"].map(type),
input: function(y, e) { return y == null ? null : [[e[0][0], +y[0]], [e[1][0], +y[1]]]; },
output: function(xy) { return xy && [xy[0][1], xy[1][1]]; }
};
var XY = {
name: "xy",
handles: ["n", "w", "e", "s", "nw", "ne", "sw", "se"].map(type),
input: function(xy) { return xy == null ? null : number2(xy); },
output: function(xy) { return xy; }
};
var cursors = {
overlay: "crosshair",
selection: "move",
n: "ns-resize",
e: "ew-resize",
s: "ns-resize",
w: "ew-resize",
nw: "nwse-resize",
ne: "nesw-resize",
se: "nwse-resize",
sw: "nesw-resize"
};
var flipX = {
e: "w",
w: "e",
nw: "ne",
ne: "nw",
se: "sw",
sw: "se"
};
var flipY = {
n: "s",
s: "n",
nw: "sw",
ne: "se",
se: "ne",
sw: "nw"
};
var signsX = {
overlay: +1,
selection: +1,
n: null,
e: +1,
s: null,
w: -1,
nw: -1,
ne: +1,
se: +1,
sw: -1
};
var signsY = {
overlay: +1,
selection: +1,
n: -1,
e: null,
s: +1,
w: null,
nw: -1,
ne: -1,
se: +1,
sw: +1
};
function type(t) {
return {type: t};
}
// Ignore right-click, since that should open the context menu.
function defaultFilter$1(event) {
return !event.ctrlKey && !event.button;
}
function defaultExtent$1() {
var svg = this.ownerSVGElement || this;
if (svg.hasAttribute("viewBox")) {
svg = svg.viewBox.baseVal;
return [[svg.x, svg.y], [svg.x + svg.width, svg.y + svg.height]];
}
return [[0, 0], [svg.width.baseVal.value, svg.height.baseVal.value]];
}
function defaultTouchable$1() {
return navigator.maxTouchPoints || ("ontouchstart" in this);
}
// Like d3.local, but with the name “__brush” rather than auto-generated.
function local(node) {
while (!node.__brush) if (!(node = node.parentNode)) return;
return node.__brush;
}
function empty(extent) {
return extent[0][0] === extent[1][0]
|| extent[0][1] === extent[1][1];
}
function brushSelection(node) {
var state = node.__brush;
return state ? state.dim.output(state.selection) : null;
}
function brushX() {
return brush$1(X);
}
function brushY() {
return brush$1(Y);
}
function brush() {
return brush$1(XY);
}
function brush$1(dim) {
var extent = defaultExtent$1,
filter = defaultFilter$1,
touchable = defaultTouchable$1,
keys = true,
listeners = dispatch("start", "brush", "end"),
handleSize = 6,
touchending;
function brush(group) {
var overlay = group
.property("__brush", initialize)
.selectAll(".overlay")
.data([type("overlay")]);
overlay.enter().append("rect")
.attr("class", "overlay")
.attr("pointer-events", "all")
.attr("cursor", cursors.overlay)
.merge(overlay)
.each(function() {
var extent = local(this).extent;
select(this)
.attr("x", extent[0][0])
.attr("y", extent[0][1])
.attr("width", extent[1][0] - extent[0][0])
.attr("height", extent[1][1] - extent[0][1]);
});
group.selectAll(".selection")
.data([type("selection")])
.enter().append("rect")
.attr("class", "selection")
.attr("cursor", cursors.selection)
.attr("fill", "#777")
.attr("fill-opacity", 0.3)
.attr("stroke", "#fff")
.attr("shape-rendering", "crispEdges");
var handle = group.selectAll(".handle")
.data(dim.handles, function(d) { return d.type; });
handle.exit().remove();
handle.enter().append("rect")
.attr("class", function(d) { return "handle handle--" + d.type; })
.attr("cursor", function(d) { return cursors[d.type]; });
group
.each(redraw)
.attr("fill", "none")
.attr("pointer-events", "all")
.on("mousedown.brush", started)
.filter(touchable)
.on("touchstart.brush", started)
.on("touchmove.brush", touchmoved)
.on("touchend.brush touchcancel.brush", touchended)
.style("touch-action", "none")
.style("-webkit-tap-highlight-color", "rgba(0,0,0,0)");
}
brush.move = function(group, selection, event) {
if (group.tween) {
group
.on("start.brush", function(event) { emitter(this, arguments).beforestart().start(event); })
.on("interrupt.brush end.brush", function(event) { emitter(this, arguments).end(event); })
.tween("brush", function() {
var that = this,
state = that.__brush,
emit = emitter(that, arguments),
selection0 = state.selection,
selection1 = dim.input(typeof selection === "function" ? selection.apply(this, arguments) : selection, state.extent),
i = interpolate$2(selection0, selection1);
function tween(t) {
state.selection = t === 1 && selection1 === null ? null : i(t);
redraw.call(that);
emit.brush();
}
return selection0 !== null && selection1 !== null ? tween : tween(1);
});
} else {
group
.each(function() {
var that = this,
args = arguments,
state = that.__brush,
selection1 = dim.input(typeof selection === "function" ? selection.apply(that, args) : selection, state.extent),
emit = emitter(that, args).beforestart();
interrupt(that);
state.selection = selection1 === null ? null : selection1;
redraw.call(that);
emit.start(event).brush(event).end(event);
});
}
};
brush.clear = function(group, event) {
brush.move(group, null, event);
};
function redraw() {
var group = select(this),
selection = local(this).selection;
if (selection) {
group.selectAll(".selection")
.style("display", null)
.attr("x", selection[0][0])
.attr("y", selection[0][1])
.attr("width", selection[1][0] - selection[0][0])
.attr("height", selection[1][1] - selection[0][1]);
group.selectAll(".handle")
.style("display", null)
.attr("x", function(d) { return d.type[d.type.length - 1] === "e" ? selection[1][0] - handleSize / 2 : selection[0][0] - handleSize / 2; })
.attr("y", function(d) { return d.type[0] === "s" ? selection[1][1] - handleSize / 2 : selection[0][1] - handleSize / 2; })
.attr("width", function(d) { return d.type === "n" || d.type === "s" ? selection[1][0] - selection[0][0] + handleSize : handleSize; })
.attr("height", function(d) { return d.type === "e" || d.type === "w" ? selection[1][1] - selection[0][1] + handleSize : handleSize; });
}
else {
group.selectAll(".selection,.handle")
.style("display", "none")
.attr("x", null)
.attr("y", null)
.attr("width", null)
.attr("height", null);
}
}
function emitter(that, args, clean) {
var emit = that.__brush.emitter;
return emit && (!clean || !emit.clean) ? emit : new Emitter(that, args, clean);
}
function Emitter(that, args, clean) {
this.that = that;
this.args = args;
this.state = that.__brush;
this.active = 0;
this.clean = clean;
}
Emitter.prototype = {
beforestart: function() {
if (++this.active === 1) this.state.emitter = this, this.starting = true;
return this;
},
start: function(event, mode) {
if (this.starting) this.starting = false, this.emit("start", event, mode);
else this.emit("brush", event);
return this;
},
brush: function(event, mode) {
this.emit("brush", event, mode);
return this;
},
end: function(event, mode) {
if (--this.active === 0) delete this.state.emitter, this.emit("end", event, mode);
return this;
},
emit: function(type, event, mode) {
var d = select(this.that).datum();
listeners.call(
type,
this.that,
new BrushEvent(type, {
sourceEvent: event,
target: brush,
selection: dim.output(this.state.selection),
mode,
dispatch: listeners
}),
d
);
}
};
function started(event) {
if (touchending && !event.touches) return;
if (!filter.apply(this, arguments)) return;
var that = this,
type = event.target.__data__.type,
mode = (keys && event.metaKey ? type = "overlay" : type) === "selection" ? MODE_DRAG : (keys && event.altKey ? MODE_CENTER : MODE_HANDLE),
signX = dim === Y ? null : signsX[type],
signY = dim === X ? null : signsY[type],
state = local(that),
extent = state.extent,
selection = state.selection,
W = extent[0][0], w0, w1,
N = extent[0][1], n0, n1,
E = extent[1][0], e0, e1,
S = extent[1][1], s0, s1,
dx = 0,
dy = 0,
moving,
shifting = signX && signY && keys && event.shiftKey,
lockX,
lockY,
points = Array.from(event.touches || [event], t => {
const i = t.identifier;
t = pointer(t, that);
t.point0 = t.slice();
t.identifier = i;
return t;
});
interrupt(that);
var emit = emitter(that, arguments, true).beforestart();
if (type === "overlay") {
if (selection) moving = true;
const pts = [points[0], points[1] || points[0]];
state.selection = selection = [[
w0 = dim === Y ? W : min$1(pts[0][0], pts[1][0]),
n0 = dim === X ? N : min$1(pts[0][1], pts[1][1])
], [
e0 = dim === Y ? E : max$2(pts[0][0], pts[1][0]),
s0 = dim === X ? S : max$2(pts[0][1], pts[1][1])
]];
if (points.length > 1) move(event);
} else {
w0 = selection[0][0];
n0 = selection[0][1];
e0 = selection[1][0];
s0 = selection[1][1];
}
w1 = w0;
n1 = n0;
e1 = e0;
s1 = s0;
var group = select(that)
.attr("pointer-events", "none");
var overlay = group.selectAll(".overlay")
.attr("cursor", cursors[type]);
if (event.touches) {
emit.moved = moved;
emit.ended = ended;
} else {
var view = select(event.view)
.on("mousemove.brush", moved, true)
.on("mouseup.brush", ended, true);
if (keys) view
.on("keydown.brush", keydowned, true)
.on("keyup.brush", keyupped, true);
dragDisable(event.view);
}
redraw.call(that);
emit.start(event, mode.name);
function moved(event) {
for (const p of event.changedTouches || [event]) {
for (const d of points)
if (d.identifier === p.identifier) d.cur = pointer(p, that);
}
if (shifting && !lockX && !lockY && points.length === 1) {
const point = points[0];
if (abs$3(point.cur[0] - point[0]) > abs$3(point.cur[1] - point[1]))
lockY = true;
else
lockX = true;
}
for (const point of points)
if (point.cur) point[0] = point.cur[0], point[1] = point.cur[1];
moving = true;
noevent$1(event);
move(event);
}
function move(event) {
const point = points[0], point0 = point.point0;
var t;
dx = point[0] - point0[0];
dy = point[1] - point0[1];
switch (mode) {
case MODE_SPACE:
case MODE_DRAG: {
if (signX) dx = max$2(W - w0, min$1(E - e0, dx)), w1 = w0 + dx, e1 = e0 + dx;
if (signY) dy = max$2(N - n0, min$1(S - s0, dy)), n1 = n0 + dy, s1 = s0 + dy;
break;
}
case MODE_HANDLE: {
if (points[1]) {
if (signX) w1 = max$2(W, min$1(E, points[0][0])), e1 = max$2(W, min$1(E, points[1][0])), signX = 1;
if (signY) n1 = max$2(N, min$1(S, points[0][1])), s1 = max$2(N, min$1(S, points[1][1])), signY = 1;
} else {
if (signX < 0) dx = max$2(W - w0, min$1(E - w0, dx)), w1 = w0 + dx, e1 = e0;
else if (signX > 0) dx = max$2(W - e0, min$1(E - e0, dx)), w1 = w0, e1 = e0 + dx;
if (signY < 0) dy = max$2(N - n0, min$1(S - n0, dy)), n1 = n0 + dy, s1 = s0;
else if (signY > 0) dy = max$2(N - s0, min$1(S - s0, dy)), n1 = n0, s1 = s0 + dy;
}
break;
}
case MODE_CENTER: {
if (signX) w1 = max$2(W, min$1(E, w0 - dx * signX)), e1 = max$2(W, min$1(E, e0 + dx * signX));
if (signY) n1 = max$2(N, min$1(S, n0 - dy * signY)), s1 = max$2(N, min$1(S, s0 + dy * signY));
break;
}
}
if (e1 < w1) {
signX *= -1;
t = w0, w0 = e0, e0 = t;
t = w1, w1 = e1, e1 = t;
if (type in flipX) overlay.attr("cursor", cursors[type = flipX[type]]);
}
if (s1 < n1) {
signY *= -1;
t = n0, n0 = s0, s0 = t;
t = n1, n1 = s1, s1 = t;
if (type in flipY) overlay.attr("cursor", cursors[type = flipY[type]]);
}
if (state.selection) selection = state.selection; // May be set by brush.move!
if (lockX) w1 = selection[0][0], e1 = selection[1][0];
if (lockY) n1 = selection[0][1], s1 = selection[1][1];
if (selection[0][0] !== w1
|| selection[0][1] !== n1
|| selection[1][0] !== e1
|| selection[1][1] !== s1) {
state.selection = [[w1, n1], [e1, s1]];
redraw.call(that);
emit.brush(event, mode.name);
}
}
function ended(event) {
nopropagation$1(event);
if (event.touches) {
if (event.touches.length) return;
if (touchending) clearTimeout(touchending);
touchending = setTimeout(function() { touchending = null; }, 500); // Ghost clicks are delayed!
} else {
yesdrag(event.view, moving);
view.on("keydown.brush keyup.brush mousemove.brush mouseup.brush", null);
}
group.attr("pointer-events", "all");
overlay.attr("cursor", cursors.overlay);
if (state.selection) selection = state.selection; // May be set by brush.move (on start)!
if (empty(selection)) state.selection = null, redraw.call(that);
emit.end(event, mode.name);
}
function keydowned(event) {
switch (event.keyCode) {
case 16: { // SHIFT
shifting = signX && signY;
break;
}
case 18: { // ALT
if (mode === MODE_HANDLE) {
if (signX) e0 = e1 - dx * signX, w0 = w1 + dx * signX;
if (signY) s0 = s1 - dy * signY, n0 = n1 + dy * signY;
mode = MODE_CENTER;
move(event);
}
break;
}
case 32: { // SPACE; takes priority over ALT
if (mode === MODE_HANDLE || mode === MODE_CENTER) {
if (signX < 0) e0 = e1 - dx; else if (signX > 0) w0 = w1 - dx;
if (signY < 0) s0 = s1 - dy; else if (signY > 0) n0 = n1 - dy;
mode = MODE_SPACE;
overlay.attr("cursor", cursors.selection);
move(event);
}
break;
}
default: return;
}
noevent$1(event);
}
function keyupped(event) {
switch (event.keyCode) {
case 16: { // SHIFT
if (shifting) {
lockX = lockY = shifting = false;
move(event);
}
break;
}
case 18: { // ALT
if (mode === MODE_CENTER) {
if (signX < 0) e0 = e1; else if (signX > 0) w0 = w1;
if (signY < 0) s0 = s1; else if (signY > 0) n0 = n1;
mode = MODE_HANDLE;
move(event);
}
break;
}
case 32: { // SPACE
if (mode === MODE_SPACE) {
if (event.altKey) {
if (signX) e0 = e1 - dx * signX, w0 = w1 + dx * signX;
if (signY) s0 = s1 - dy * signY, n0 = n1 + dy * signY;
mode = MODE_CENTER;
} else {
if (signX < 0) e0 = e1; else if (signX > 0) w0 = w1;
if (signY < 0) s0 = s1; else if (signY > 0) n0 = n1;
mode = MODE_HANDLE;
}
overlay.attr("cursor", cursors[type]);
move(event);
}
break;
}
default: return;
}
noevent$1(event);
}
}
function touchmoved(event) {
emitter(this, arguments).moved(event);
}
function touchended(event) {
emitter(this, arguments).ended(event);
}
function initialize() {
var state = this.__brush || {selection: null};
state.extent = number2(extent.apply(this, arguments));
state.dim = dim;
return state;
}
brush.extent = function(_) {
return arguments.length ? (extent = typeof _ === "function" ? _ : constant$7(number2(_)), brush) : extent;
};
brush.filter = function(_) {
return arguments.length ? (filter = typeof _ === "function" ? _ : constant$7(!!_), brush) : filter;
};
brush.touchable = function(_) {
return arguments.length ? (touchable = typeof _ === "function" ? _ : constant$7(!!_), brush) : touchable;
};
brush.handleSize = function(_) {
return arguments.length ? (handleSize = +_, brush) : handleSize;
};
brush.keyModifiers = function(_) {
return arguments.length ? (keys = !!_, brush) : keys;
};
brush.on = function() {
var value = listeners.on.apply(listeners, arguments);
return value === listeners ? brush : value;
};
return brush;
}
var abs$2 = Math.abs;
var cos$2 = Math.cos;
var sin$2 = Math.sin;
var pi$3 = Math.PI;
var halfPi$2 = pi$3 / 2;
var tau$4 = pi$3 * 2;
var max$1 = Math.max;
var epsilon$5 = 1e-12;
function range$1(i, j) {
return Array.from({length: j - i}, (_, k) => i + k);
}
function compareValue(compare) {
return function(a, b) {
return compare(
a.source.value + a.target.value,
b.source.value + b.target.value
);
};
}
function chord() {
return chord$1(false, false);
}
function chordTranspose() {
return chord$1(false, true);
}
function chordDirected() {
return chord$1(true, false);
}
function chord$1(directed, transpose) {
var padAngle = 0,
sortGroups = null,
sortSubgroups = null,
sortChords = null;
function chord(matrix) {
var n = matrix.length,
groupSums = new Array(n),
groupIndex = range$1(0, n),
chords = new Array(n * n),
groups = new Array(n),
k = 0, dx;
matrix = Float64Array.from({length: n * n}, transpose
? (_, i) => matrix[i % n][i / n | 0]
: (_, i) => matrix[i / n | 0][i % n]);
// Compute the scaling factor from value to angle in [0, 2pi].
for (let i = 0; i < n; ++i) {
let x = 0;
for (let j = 0; j < n; ++j) x += matrix[i * n + j] + directed * matrix[j * n + i];
k += groupSums[i] = x;
}
k = max$1(0, tau$4 - padAngle * n) / k;
dx = k ? padAngle : tau$4 / n;
// Compute the angles for each group and constituent chord.
{
let x = 0;
if (sortGroups) groupIndex.sort((a, b) => sortGroups(groupSums[a], groupSums[b]));
for (const i of groupIndex) {
const x0 = x;
if (directed) {
const subgroupIndex = range$1(~n + 1, n).filter(j => j < 0 ? matrix[~j * n + i] : matrix[i * n + j]);
if (sortSubgroups) subgroupIndex.sort((a, b) => sortSubgroups(a < 0 ? -matrix[~a * n + i] : matrix[i * n + a], b < 0 ? -matrix[~b * n + i] : matrix[i * n + b]));
for (const j of subgroupIndex) {
if (j < 0) {
const chord = chords[~j * n + i] || (chords[~j * n + i] = {source: null, target: null});
chord.target = {index: i, startAngle: x, endAngle: x += matrix[~j * n + i] * k, value: matrix[~j * n + i]};
} else {
const chord = chords[i * n + j] || (chords[i * n + j] = {source: null, target: null});
chord.source = {index: i, startAngle: x, endAngle: x += matrix[i * n + j] * k, value: matrix[i * n + j]};
}
}
groups[i] = {index: i, startAngle: x0, endAngle: x, value: groupSums[i]};
} else {
const subgroupIndex = range$1(0, n).filter(j => matrix[i * n + j] || matrix[j * n + i]);
if (sortSubgroups) subgroupIndex.sort((a, b) => sortSubgroups(matrix[i * n + a], matrix[i * n + b]));
for (const j of subgroupIndex) {
let chord;
if (i < j) {
chord = chords[i * n + j] || (chords[i * n + j] = {source: null, target: null});
chord.source = {index: i, startAngle: x, endAngle: x += matrix[i * n + j] * k, value: matrix[i * n + j]};
} else {
chord = chords[j * n + i] || (chords[j * n + i] = {source: null, target: null});
chord.target = {index: i, startAngle: x, endAngle: x += matrix[i * n + j] * k, value: matrix[i * n + j]};
if (i === j) chord.source = chord.target;
}
if (chord.source && chord.target && chord.source.value < chord.target.value) {
const source = chord.source;
chord.source = chord.target;
chord.target = source;
}
}
groups[i] = {index: i, startAngle: x0, endAngle: x, value: groupSums[i]};
}
x += dx;
}
}
// Remove empty chords.
chords = Object.values(chords);
chords.groups = groups;
return sortChords ? chords.sort(sortChords) : chords;
}
chord.padAngle = function(_) {
return arguments.length ? (padAngle = max$1(0, _), chord) : padAngle;
};
chord.sortGroups = function(_) {
return arguments.length ? (sortGroups = _, chord) : sortGroups;
};
chord.sortSubgroups = function(_) {
return arguments.length ? (sortSubgroups = _, chord) : sortSubgroups;
};
chord.sortChords = function(_) {
return arguments.length ? (_ == null ? sortChords = null : (sortChords = compareValue(_))._ = _, chord) : sortChords && sortChords._;
};
return chord;
}
const pi$2 = Math.PI,
tau$3 = 2 * pi$2,
epsilon$4 = 1e-6,
tauEpsilon = tau$3 - epsilon$4;
function append$1(strings) {
this._ += strings[0];
for (let i = 1, n = strings.length; i < n; ++i) {
this._ += arguments[i] + strings[i];
}
}
function appendRound$1(digits) {
let d = Math.floor(digits);
if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);
if (d > 15) return append$1;
const k = 10 ** d;
return function(strings) {
this._ += strings[0];
for (let i = 1, n = strings.length; i < n; ++i) {
this._ += Math.round(arguments[i] * k) / k + strings[i];
}
};
}
let Path$1 = class Path {
constructor(digits) {
this._x0 = this._y0 = // start of current subpath
this._x1 = this._y1 = null; // end of current subpath
this._ = "";
this._append = digits == null ? append$1 : appendRound$1(digits);
}
moveTo(x, y) {
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
}
closePath() {
if (this._x1 !== null) {
this._x1 = this._x0, this._y1 = this._y0;
this._append`Z`;
}
}
lineTo(x, y) {
this._append`L${this._x1 = +x},${this._y1 = +y}`;
}
quadraticCurveTo(x1, y1, x, y) {
this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;
}
bezierCurveTo(x1, y1, x2, y2, x, y) {
this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;
}
arcTo(x1, y1, x2, y2, r) {
x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;
// Is the radius negative? Error.
if (r < 0) throw new Error(`negative radius: ${r}`);
let x0 = this._x1,
y0 = this._y1,
x21 = x2 - x1,
y21 = y2 - y1,
x01 = x0 - x1,
y01 = y0 - y1,
l01_2 = x01 * x01 + y01 * y01;
// Is this path empty? Move to (x1,y1).
if (this._x1 === null) {
this._append`M${this._x1 = x1},${this._y1 = y1}`;
}
// Or, is (x1,y1) coincident with (x0,y0)? Do nothing.
else if (!(l01_2 > epsilon$4));
// Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?
// Equivalently, is (x1,y1) coincident with (x2,y2)?
// Or, is the radius zero? Line to (x1,y1).
else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon$4) || !r) {
this._append`L${this._x1 = x1},${this._y1 = y1}`;
}
// Otherwise, draw an arc!
else {
let x20 = x2 - x0,
y20 = y2 - y0,
l21_2 = x21 * x21 + y21 * y21,
l20_2 = x20 * x20 + y20 * y20,
l21 = Math.sqrt(l21_2),
l01 = Math.sqrt(l01_2),
l = r * Math.tan((pi$2 - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),
t01 = l / l01,
t21 = l / l21;
// If the start tangent is not coincident with (x0,y0), line to.
if (Math.abs(t01 - 1) > epsilon$4) {
this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;
}
this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;
}
}
arc(x, y, r, a0, a1, ccw) {
x = +x, y = +y, r = +r, ccw = !!ccw;
// Is the radius negative? Error.
if (r < 0) throw new Error(`negative radius: ${r}`);
let dx = r * Math.cos(a0),
dy = r * Math.sin(a0),
x0 = x + dx,
y0 = y + dy,
cw = 1 ^ ccw,
da = ccw ? a0 - a1 : a1 - a0;
// Is this path empty? Move to (x0,y0).
if (this._x1 === null) {
this._append`M${x0},${y0}`;
}
// Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).
else if (Math.abs(this._x1 - x0) > epsilon$4 || Math.abs(this._y1 - y0) > epsilon$4) {
this._append`L${x0},${y0}`;
}
// Is this arc empty? Were done.
if (!r) return;
// Does the angle go the wrong way? Flip the direction.
if (da < 0) da = da % tau$3 + tau$3;
// Is this a complete circle? Draw two arcs to complete the circle.
if (da > tauEpsilon) {
this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;
}
// Is this arc non-empty? Draw an arc!
else if (da > epsilon$4) {
this._append`A${r},${r},0,${+(da >= pi$2)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;
}
}
rect(x, y, w, h) {
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;
}
toString() {
return this._;
}
};
function path() {
return new Path$1;
}
// Allow instanceof d3.path
path.prototype = Path$1.prototype;
function pathRound(digits = 3) {
return new Path$1(+digits);
}
var slice$2 = Array.prototype.slice;
function constant$6(x) {
return function() {
return x;
};
}
function defaultSource$1(d) {
return d.source;
}
function defaultTarget(d) {
return d.target;
}
function defaultRadius$1(d) {
return d.radius;
}
function defaultStartAngle(d) {
return d.startAngle;
}
function defaultEndAngle(d) {
return d.endAngle;
}
function defaultPadAngle() {
return 0;
}
function defaultArrowheadRadius() {
return 10;
}
function ribbon(headRadius) {
var source = defaultSource$1,
target = defaultTarget,
sourceRadius = defaultRadius$1,
targetRadius = defaultRadius$1,
startAngle = defaultStartAngle,
endAngle = defaultEndAngle,
padAngle = defaultPadAngle,
context = null;
function ribbon() {
var buffer,
s = source.apply(this, arguments),
t = target.apply(this, arguments),
ap = padAngle.apply(this, arguments) / 2,
argv = slice$2.call(arguments),
sr = +sourceRadius.apply(this, (argv[0] = s, argv)),
sa0 = startAngle.apply(this, argv) - halfPi$2,
sa1 = endAngle.apply(this, argv) - halfPi$2,
tr = +targetRadius.apply(this, (argv[0] = t, argv)),
ta0 = startAngle.apply(this, argv) - halfPi$2,
ta1 = endAngle.apply(this, argv) - halfPi$2;
if (!context) context = buffer = path();
if (ap > epsilon$5) {
if (abs$2(sa1 - sa0) > ap * 2 + epsilon$5) sa1 > sa0 ? (sa0 += ap, sa1 -= ap) : (sa0 -= ap, sa1 += ap);
else sa0 = sa1 = (sa0 + sa1) / 2;
if (abs$2(ta1 - ta0) > ap * 2 + epsilon$5) ta1 > ta0 ? (ta0 += ap, ta1 -= ap) : (ta0 -= ap, ta1 += ap);
else ta0 = ta1 = (ta0 + ta1) / 2;
}
context.moveTo(sr * cos$2(sa0), sr * sin$2(sa0));
context.arc(0, 0, sr, sa0, sa1);
if (sa0 !== ta0 || sa1 !== ta1) {
if (headRadius) {
var hr = +headRadius.apply(this, arguments), tr2 = tr - hr, ta2 = (ta0 + ta1) / 2;
context.quadraticCurveTo(0, 0, tr2 * cos$2(ta0), tr2 * sin$2(ta0));
context.lineTo(tr * cos$2(ta2), tr * sin$2(ta2));
context.lineTo(tr2 * cos$2(ta1), tr2 * sin$2(ta1));
} else {
context.quadraticCurveTo(0, 0, tr * cos$2(ta0), tr * sin$2(ta0));
context.arc(0, 0, tr, ta0, ta1);
}
}
context.quadraticCurveTo(0, 0, sr * cos$2(sa0), sr * sin$2(sa0));
context.closePath();
if (buffer) return context = null, buffer + "" || null;
}
if (headRadius) ribbon.headRadius = function(_) {
return arguments.length ? (headRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : headRadius;
};
ribbon.radius = function(_) {
return arguments.length ? (sourceRadius = targetRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : sourceRadius;
};
ribbon.sourceRadius = function(_) {
return arguments.length ? (sourceRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : sourceRadius;
};
ribbon.targetRadius = function(_) {
return arguments.length ? (targetRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : targetRadius;
};
ribbon.startAngle = function(_) {
return arguments.length ? (startAngle = typeof _ === "function" ? _ : constant$6(+_), ribbon) : startAngle;
};
ribbon.endAngle = function(_) {
return arguments.length ? (endAngle = typeof _ === "function" ? _ : constant$6(+_), ribbon) : endAngle;
};
ribbon.padAngle = function(_) {
return arguments.length ? (padAngle = typeof _ === "function" ? _ : constant$6(+_), ribbon) : padAngle;
};
ribbon.source = function(_) {
return arguments.length ? (source = _, ribbon) : source;
};
ribbon.target = function(_) {
return arguments.length ? (target = _, ribbon) : target;
};
ribbon.context = function(_) {
return arguments.length ? ((context = _ == null ? null : _), ribbon) : context;
};
return ribbon;
}
function ribbon$1() {
return ribbon();
}
function ribbonArrow() {
return ribbon(defaultArrowheadRadius);
}
var array$2 = Array.prototype;
var slice$1 = array$2.slice;
function ascending$1(a, b) {
return a - b;
}
function area$3(ring) {
var i = 0, n = ring.length, area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1];
while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1];
return area;
}
var constant$5 = x => () => x;
function contains$2(ring, hole) {
var i = -1, n = hole.length, c;
while (++i < n) if (c = ringContains(ring, hole[i])) return c;
return 0;
}
function ringContains(ring, point) {
var x = point[0], y = point[1], contains = -1;
for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) {
var pi = ring[i], xi = pi[0], yi = pi[1], pj = ring[j], xj = pj[0], yj = pj[1];
if (segmentContains(pi, pj, point)) return 0;
if (((yi > y) !== (yj > y)) && ((x < (xj - xi) * (y - yi) / (yj - yi) + xi))) contains = -contains;
}
return contains;
}
function segmentContains(a, b, c) {
var i; return collinear$1(a, b, c) && within(a[i = +(a[0] === b[0])], c[i], b[i]);
}
function collinear$1(a, b, c) {
return (b[0] - a[0]) * (c[1] - a[1]) === (c[0] - a[0]) * (b[1] - a[1]);
}
function within(p, q, r) {
return p <= q && q <= r || r <= q && q <= p;
}
function noop$2() {}
var cases = [
[],
[[[1.0, 1.5], [0.5, 1.0]]],
[[[1.5, 1.0], [1.0, 1.5]]],
[[[1.5, 1.0], [0.5, 1.0]]],
[[[1.0, 0.5], [1.5, 1.0]]],
[[[1.0, 1.5], [0.5, 1.0]], [[1.0, 0.5], [1.5, 1.0]]],
[[[1.0, 0.5], [1.0, 1.5]]],
[[[1.0, 0.5], [0.5, 1.0]]],
[[[0.5, 1.0], [1.0, 0.5]]],
[[[1.0, 1.5], [1.0, 0.5]]],
[[[0.5, 1.0], [1.0, 0.5]], [[1.5, 1.0], [1.0, 1.5]]],
[[[1.5, 1.0], [1.0, 0.5]]],
[[[0.5, 1.0], [1.5, 1.0]]],
[[[1.0, 1.5], [1.5, 1.0]]],
[[[0.5, 1.0], [1.0, 1.5]]],
[]
];
function Contours() {
var dx = 1,
dy = 1,
threshold = thresholdSturges,
smooth = smoothLinear;
function contours(values) {
var tz = threshold(values);
// Convert number of thresholds into uniform thresholds.
if (!Array.isArray(tz)) {
const e = extent$1(values, finite);
tz = ticks(...nice$1(e[0], e[1], tz), tz);
while (tz[tz.length - 1] >= e[1]) tz.pop();
while (tz[1] < e[0]) tz.shift();
} else {
tz = tz.slice().sort(ascending$1);
}
return tz.map(value => contour(values, value));
}
// Accumulate, smooth contour rings, assign holes to exterior rings.
// Based on https://github.com/mbostock/shapefile/blob/v0.6.2/shp/polygon.js
function contour(values, value) {
const v = value == null ? NaN : +value;
if (isNaN(v)) throw new Error(`invalid value: ${value}`);
var polygons = [],
holes = [];
isorings(values, v, function(ring) {
smooth(ring, values, v);
if (area$3(ring) > 0) polygons.push([ring]);
else holes.push(ring);
});
holes.forEach(function(hole) {
for (var i = 0, n = polygons.length, polygon; i < n; ++i) {
if (contains$2((polygon = polygons[i])[0], hole) !== -1) {
polygon.push(hole);
return;
}
}
});
return {
type: "MultiPolygon",
value: value,
coordinates: polygons
};
}
// Marching squares with isolines stitched into rings.
// Based on https://github.com/topojson/topojson-client/blob/v3.0.0/src/stitch.js
function isorings(values, value, callback) {
var fragmentByStart = new Array,
fragmentByEnd = new Array,
x, y, t0, t1, t2, t3;
// Special case for the first row (y = -1, t2 = t3 = 0).
x = y = -1;
t1 = above(values[0], value);
cases[t1 << 1].forEach(stitch);
while (++x < dx - 1) {
t0 = t1, t1 = above(values[x + 1], value);
cases[t0 | t1 << 1].forEach(stitch);
}
cases[t1 << 0].forEach(stitch);
// General case for the intermediate rows.
while (++y < dy - 1) {
x = -1;
t1 = above(values[y * dx + dx], value);
t2 = above(values[y * dx], value);
cases[t1 << 1 | t2 << 2].forEach(stitch);
while (++x < dx - 1) {
t0 = t1, t1 = above(values[y * dx + dx + x + 1], value);
t3 = t2, t2 = above(values[y * dx + x + 1], value);
cases[t0 | t1 << 1 | t2 << 2 | t3 << 3].forEach(stitch);
}
cases[t1 | t2 << 3].forEach(stitch);
}
// Special case for the last row (y = dy - 1, t0 = t1 = 0).
x = -1;
t2 = values[y * dx] >= value;
cases[t2 << 2].forEach(stitch);
while (++x < dx - 1) {
t3 = t2, t2 = above(values[y * dx + x + 1], value);
cases[t2 << 2 | t3 << 3].forEach(stitch);
}
cases[t2 << 3].forEach(stitch);
function stitch(line) {
var start = [line[0][0] + x, line[0][1] + y],
end = [line[1][0] + x, line[1][1] + y],
startIndex = index(start),
endIndex = index(end),
f, g;
if (f = fragmentByEnd[startIndex]) {
if (g = fragmentByStart[endIndex]) {
delete fragmentByEnd[f.end];
delete fragmentByStart[g.start];
if (f === g) {
f.ring.push(end);
callback(f.ring);
} else {
fragmentByStart[f.start] = fragmentByEnd[g.end] = {start: f.start, end: g.end, ring: f.ring.concat(g.ring)};
}
} else {
delete fragmentByEnd[f.end];
f.ring.push(end);
fragmentByEnd[f.end = endIndex] = f;
}
} else if (f = fragmentByStart[endIndex]) {
if (g = fragmentByEnd[startIndex]) {
delete fragmentByStart[f.start];
delete fragmentByEnd[g.end];
if (f === g) {
f.ring.push(end);
callback(f.ring);
} else {
fragmentByStart[g.start] = fragmentByEnd[f.end] = {start: g.start, end: f.end, ring: g.ring.concat(f.ring)};
}
} else {
delete fragmentByStart[f.start];
f.ring.unshift(start);
fragmentByStart[f.start = startIndex] = f;
}
} else {
fragmentByStart[startIndex] = fragmentByEnd[endIndex] = {start: startIndex, end: endIndex, ring: [start, end]};
}
}
}
function index(point) {
return point[0] * 2 + point[1] * (dx + 1) * 4;
}
function smoothLinear(ring, values, value) {
ring.forEach(function(point) {
var x = point[0],
y = point[1],
xt = x | 0,
yt = y | 0,
v1 = valid(values[yt * dx + xt]);
if (x > 0 && x < dx && xt === x) {
point[0] = smooth1(x, valid(values[yt * dx + xt - 1]), v1, value);
}
if (y > 0 && y < dy && yt === y) {
point[1] = smooth1(y, valid(values[(yt - 1) * dx + xt]), v1, value);
}
});
}
contours.contour = contour;
contours.size = function(_) {
if (!arguments.length) return [dx, dy];
var _0 = Math.floor(_[0]), _1 = Math.floor(_[1]);
if (!(_0 >= 0 && _1 >= 0)) throw new Error("invalid size");
return dx = _0, dy = _1, contours;
};
contours.thresholds = function(_) {
return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant$5(slice$1.call(_)) : constant$5(_), contours) : threshold;
};
contours.smooth = function(_) {
return arguments.length ? (smooth = _ ? smoothLinear : noop$2, contours) : smooth === smoothLinear;
};
return contours;
}
// When computing the extent, ignore infinite values (as well as invalid ones).
function finite(x) {
return isFinite(x) ? x : NaN;
}
// Is the (possibly invalid) x greater than or equal to the (known valid) value?
// Treat any invalid value as below negative infinity.
function above(x, value) {
return x == null ? false : +x >= value;
}
// During smoothing, treat any invalid value as negative infinity.
function valid(v) {
return v == null || isNaN(v = +v) ? -Infinity : v;
}
function smooth1(x, v0, v1, value) {
const a = value - v0;
const b = v1 - v0;
const d = isFinite(a) || isFinite(b) ? a / b : Math.sign(a) / Math.sign(b);
return isNaN(d) ? x : x + d - 0.5;
}
function defaultX$1(d) {
return d[0];
}
function defaultY$1(d) {
return d[1];
}
function defaultWeight() {
return 1;
}
function density() {
var x = defaultX$1,
y = defaultY$1,
weight = defaultWeight,
dx = 960,
dy = 500,
r = 20, // blur radius
k = 2, // log2(grid cell size)
o = r * 3, // grid offset, to pad for blur
n = (dx + o * 2) >> k, // grid width
m = (dy + o * 2) >> k, // grid height
threshold = constant$5(20);
function grid(data) {
var values = new Float32Array(n * m),
pow2k = Math.pow(2, -k),
i = -1;
for (const d of data) {
var xi = (x(d, ++i, data) + o) * pow2k,
yi = (y(d, i, data) + o) * pow2k,
wi = +weight(d, i, data);
if (wi && xi >= 0 && xi < n && yi >= 0 && yi < m) {
var x0 = Math.floor(xi),
y0 = Math.floor(yi),
xt = xi - x0 - 0.5,
yt = yi - y0 - 0.5;
values[x0 + y0 * n] += (1 - xt) * (1 - yt) * wi;
values[x0 + 1 + y0 * n] += xt * (1 - yt) * wi;
values[x0 + 1 + (y0 + 1) * n] += xt * yt * wi;
values[x0 + (y0 + 1) * n] += (1 - xt) * yt * wi;
}
}
blur2({data: values, width: n, height: m}, r * pow2k);
return values;
}
function density(data) {
var values = grid(data),
tz = threshold(values),
pow4k = Math.pow(2, 2 * k);
// Convert number of thresholds into uniform thresholds.
if (!Array.isArray(tz)) {
tz = ticks(Number.MIN_VALUE, max$3(values) / pow4k, tz);
}
return Contours()
.size([n, m])
.thresholds(tz.map(d => d * pow4k))
(values)
.map((c, i) => (c.value = +tz[i], transform(c)));
}
density.contours = function(data) {
var values = grid(data),
contours = Contours().size([n, m]),
pow4k = Math.pow(2, 2 * k),
contour = value => {
value = +value;
var c = transform(contours.contour(values, value * pow4k));
c.value = value; // preserve exact threshold value
return c;
};
Object.defineProperty(contour, "max", {get: () => max$3(values) / pow4k});
return contour;
};
function transform(geometry) {
geometry.coordinates.forEach(transformPolygon);
return geometry;
}
function transformPolygon(coordinates) {
coordinates.forEach(transformRing);
}
function transformRing(coordinates) {
coordinates.forEach(transformPoint);
}
// TODO Optimize.
function transformPoint(coordinates) {
coordinates[0] = coordinates[0] * Math.pow(2, k) - o;
coordinates[1] = coordinates[1] * Math.pow(2, k) - o;
}
function resize() {
o = r * 3;
n = (dx + o * 2) >> k;
m = (dy + o * 2) >> k;
return density;
}
density.x = function(_) {
return arguments.length ? (x = typeof _ === "function" ? _ : constant$5(+_), density) : x;
};
density.y = function(_) {
return arguments.length ? (y = typeof _ === "function" ? _ : constant$5(+_), density) : y;
};
density.weight = function(_) {
return arguments.length ? (weight = typeof _ === "function" ? _ : constant$5(+_), density) : weight;
};
density.size = function(_) {
if (!arguments.length) return [dx, dy];
var _0 = +_[0], _1 = +_[1];
if (!(_0 >= 0 && _1 >= 0)) throw new Error("invalid size");
return dx = _0, dy = _1, resize();
};
density.cellSize = function(_) {
if (!arguments.length) return 1 << k;
if (!((_ = +_) >= 1)) throw new Error("invalid cell size");
return k = Math.floor(Math.log(_) / Math.LN2), resize();
};
density.thresholds = function(_) {
return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant$5(slice$1.call(_)) : constant$5(_), density) : threshold;
};
density.bandwidth = function(_) {
if (!arguments.length) return Math.sqrt(r * (r + 1));
if (!((_ = +_) >= 0)) throw new Error("invalid bandwidth");
return r = (Math.sqrt(4 * _ * _ + 1) - 1) / 2, resize();
};
return density;
}
const epsilon$3 = 1.1102230246251565e-16;
const splitter = 134217729;
const resulterrbound = (3 + 8 * epsilon$3) * epsilon$3;
// fast_expansion_sum_zeroelim routine from oritinal code
function sum$1(elen, e, flen, f, h) {
let Q, Qnew, hh, bvirt;
let enow = e[0];
let fnow = f[0];
let eindex = 0;
let findex = 0;
if ((fnow > enow) === (fnow > -enow)) {
Q = enow;
enow = e[++eindex];
} else {
Q = fnow;
fnow = f[++findex];
}
let hindex = 0;
if (eindex < elen && findex < flen) {
if ((fnow > enow) === (fnow > -enow)) {
Qnew = enow + Q;
hh = Q - (Qnew - enow);
enow = e[++eindex];
} else {
Qnew = fnow + Q;
hh = Q - (Qnew - fnow);
fnow = f[++findex];
}
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
while (eindex < elen && findex < flen) {
if ((fnow > enow) === (fnow > -enow)) {
Qnew = Q + enow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (enow - bvirt);
enow = e[++eindex];
} else {
Qnew = Q + fnow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
fnow = f[++findex];
}
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
}
}
while (eindex < elen) {
Qnew = Q + enow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (enow - bvirt);
enow = e[++eindex];
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
}
while (findex < flen) {
Qnew = Q + fnow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
fnow = f[++findex];
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
}
if (Q !== 0 || hindex === 0) {
h[hindex++] = Q;
}
return hindex;
}
function estimate(elen, e) {
let Q = e[0];
for (let i = 1; i < elen; i++) Q += e[i];
return Q;
}
function vec(n) {
return new Float64Array(n);
}
const ccwerrboundA = (3 + 16 * epsilon$3) * epsilon$3;
const ccwerrboundB = (2 + 12 * epsilon$3) * epsilon$3;
const ccwerrboundC = (9 + 64 * epsilon$3) * epsilon$3 * epsilon$3;
const B = vec(4);
const C1 = vec(8);
const C2 = vec(12);
const D = vec(16);
const u = vec(4);
function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
let acxtail, acytail, bcxtail, bcytail;
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
const acx = ax - cx;
const bcx = bx - cx;
const acy = ay - cy;
const bcy = by - cy;
s1 = acx * bcy;
c = splitter * acx;
ahi = c - (c - acx);
alo = acx - ahi;
c = splitter * bcy;
bhi = c - (c - bcy);
blo = bcy - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acy * bcx;
c = splitter * acy;
ahi = c - (c - acy);
alo = acy - ahi;
c = splitter * bcx;
bhi = c - (c - bcx);
blo = bcx - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
B[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
B[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
B[2] = _j - (u3 - bvirt) + (_i - bvirt);
B[3] = u3;
let det = estimate(4, B);
let errbound = ccwerrboundB * detsum;
if (det >= errbound || -det >= errbound) {
return det;
}
bvirt = ax - acx;
acxtail = ax - (acx + bvirt) + (bvirt - cx);
bvirt = bx - bcx;
bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
bvirt = ay - acy;
acytail = ay - (acy + bvirt) + (bvirt - cy);
bvirt = by - bcy;
bcytail = by - (bcy + bvirt) + (bvirt - cy);
if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
return det;
}
errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
if (det >= errbound || -det >= errbound) return det;
s1 = acxtail * bcy;
c = splitter * acxtail;
ahi = c - (c - acxtail);
alo = acxtail - ahi;
c = splitter * bcy;
bhi = c - (c - bcy);
blo = bcy - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acytail * bcx;
c = splitter * acytail;
ahi = c - (c - acytail);
alo = acytail - ahi;
c = splitter * bcx;
bhi = c - (c - bcx);
blo = bcx - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
u[3] = u3;
const C1len = sum$1(4, B, 4, u, C1);
s1 = acx * bcytail;
c = splitter * acx;
ahi = c - (c - acx);
alo = acx - ahi;
c = splitter * bcytail;
bhi = c - (c - bcytail);
blo = bcytail - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acy * bcxtail;
c = splitter * acy;
ahi = c - (c - acy);
alo = acy - ahi;
c = splitter * bcxtail;
bhi = c - (c - bcxtail);
blo = bcxtail - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
u[3] = u3;
const C2len = sum$1(C1len, C1, 4, u, C2);
s1 = acxtail * bcytail;
c = splitter * acxtail;
ahi = c - (c - acxtail);
alo = acxtail - ahi;
c = splitter * bcytail;
bhi = c - (c - bcytail);
blo = bcytail - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acytail * bcxtail;
c = splitter * acytail;
ahi = c - (c - acytail);
alo = acytail - ahi;
c = splitter * bcxtail;
bhi = c - (c - bcxtail);
blo = bcxtail - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
u[3] = u3;
const Dlen = sum$1(C2len, C2, 4, u, D);
return D[Dlen - 1];
}
function orient2d(ax, ay, bx, by, cx, cy) {
const detleft = (ay - cy) * (bx - cx);
const detright = (ax - cx) * (by - cy);
const det = detleft - detright;
const detsum = Math.abs(detleft + detright);
if (Math.abs(det) >= ccwerrboundA * detsum) return det;
return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
}
const EPSILON = Math.pow(2, -52);
const EDGE_STACK = new Uint32Array(512);
class Delaunator {
static from(points, getX = defaultGetX, getY = defaultGetY) {
const n = points.length;
const coords = new Float64Array(n * 2);
for (let i = 0; i < n; i++) {
const p = points[i];
coords[2 * i] = getX(p);
coords[2 * i + 1] = getY(p);
}
return new Delaunator(coords);
}
constructor(coords) {
const n = coords.length >> 1;
if (n > 0 && typeof coords[0] !== 'number') throw new Error('Expected coords to contain numbers.');
this.coords = coords;
// arrays that will store the triangulation graph
const maxTriangles = Math.max(2 * n - 5, 0);
this._triangles = new Uint32Array(maxTriangles * 3);
this._halfedges = new Int32Array(maxTriangles * 3);
// temporary arrays for tracking the edges of the advancing convex hull
this._hashSize = Math.ceil(Math.sqrt(n));
this._hullPrev = new Uint32Array(n); // edge to prev edge
this._hullNext = new Uint32Array(n); // edge to next edge
this._hullTri = new Uint32Array(n); // edge to adjacent triangle
this._hullHash = new Int32Array(this._hashSize); // angular edge hash
// temporary arrays for sorting points
this._ids = new Uint32Array(n);
this._dists = new Float64Array(n);
this.update();
}
update() {
const {coords, _hullPrev: hullPrev, _hullNext: hullNext, _hullTri: hullTri, _hullHash: hullHash} = this;
const n = coords.length >> 1;
// populate an array of point indices; calculate input data bbox
let minX = Infinity;
let minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (let i = 0; i < n; i++) {
const x = coords[2 * i];
const y = coords[2 * i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
this._ids[i] = i;
}
const cx = (minX + maxX) / 2;
const cy = (minY + maxY) / 2;
let i0, i1, i2;
// pick a seed point close to the center
for (let i = 0, minDist = Infinity; i < n; i++) {
const d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]);
if (d < minDist) {
i0 = i;
minDist = d;
}
}
const i0x = coords[2 * i0];
const i0y = coords[2 * i0 + 1];
// find the point closest to the seed
for (let i = 0, minDist = Infinity; i < n; i++) {
if (i === i0) continue;
const d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]);
if (d < minDist && d > 0) {
i1 = i;
minDist = d;
}
}
let i1x = coords[2 * i1];
let i1y = coords[2 * i1 + 1];
let minRadius = Infinity;
// find the third point which forms the smallest circumcircle with the first two
for (let i = 0; i < n; i++) {
if (i === i0 || i === i1) continue;
const r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]);
if (r < minRadius) {
i2 = i;
minRadius = r;
}
}
let i2x = coords[2 * i2];
let i2y = coords[2 * i2 + 1];
if (minRadius === Infinity) {
// order collinear points by dx (or dy if all x are identical)
// and return the list as a hull
for (let i = 0; i < n; i++) {
this._dists[i] = (coords[2 * i] - coords[0]) || (coords[2 * i + 1] - coords[1]);
}
quicksort(this._ids, this._dists, 0, n - 1);
const hull = new Uint32Array(n);
let j = 0;
for (let i = 0, d0 = -Infinity; i < n; i++) {
const id = this._ids[i];
const d = this._dists[id];
if (d > d0) {
hull[j++] = id;
d0 = d;
}
}
this.hull = hull.subarray(0, j);
this.triangles = new Uint32Array(0);
this.halfedges = new Uint32Array(0);
return;
}
// swap the order of the seed points for counter-clockwise orientation
if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0) {
const i = i1;
const x = i1x;
const y = i1y;
i1 = i2;
i1x = i2x;
i1y = i2y;
i2 = i;
i2x = x;
i2y = y;
}
const center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
this._cx = center.x;
this._cy = center.y;
for (let i = 0; i < n; i++) {
this._dists[i] = dist(coords[2 * i], coords[2 * i + 1], center.x, center.y);
}
// sort the points by distance from the seed triangle circumcenter
quicksort(this._ids, this._dists, 0, n - 1);
// set up the seed triangle as the starting hull
this._hullStart = i0;
let hullSize = 3;
hullNext[i0] = hullPrev[i2] = i1;
hullNext[i1] = hullPrev[i0] = i2;
hullNext[i2] = hullPrev[i1] = i0;
hullTri[i0] = 0;
hullTri[i1] = 1;
hullTri[i2] = 2;
hullHash.fill(-1);
hullHash[this._hashKey(i0x, i0y)] = i0;
hullHash[this._hashKey(i1x, i1y)] = i1;
hullHash[this._hashKey(i2x, i2y)] = i2;
this.trianglesLen = 0;
this._addTriangle(i0, i1, i2, -1, -1, -1);
for (let k = 0, xp, yp; k < this._ids.length; k++) {
const i = this._ids[k];
const x = coords[2 * i];
const y = coords[2 * i + 1];
// skip near-duplicate points
if (k > 0 && Math.abs(x - xp) <= EPSILON && Math.abs(y - yp) <= EPSILON) continue;
xp = x;
yp = y;
// skip seed triangle points
if (i === i0 || i === i1 || i === i2) continue;
// find a visible edge on the convex hull using edge hash
let start = 0;
for (let j = 0, key = this._hashKey(x, y); j < this._hashSize; j++) {
start = hullHash[(key + j) % this._hashSize];
if (start !== -1 && start !== hullNext[start]) break;
}
start = hullPrev[start];
let e = start, q;
while (q = hullNext[e], orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) {
e = q;
if (e === start) {
e = -1;
break;
}
}
if (e === -1) continue; // likely a near-duplicate point; skip it
// add the first triangle from the point
let t = this._addTriangle(e, i, hullNext[e], -1, -1, hullTri[e]);
// recursively flip triangles from the point until they satisfy the Delaunay condition
hullTri[i] = this._legalize(t + 2);
hullTri[e] = t; // keep track of boundary triangles on the hull
hullSize++;
// walk forward through the hull, adding more triangles and flipping recursively
let n = hullNext[e];
while (q = hullNext[n], orient2d(x, y, coords[2 * n], coords[2 * n + 1], coords[2 * q], coords[2 * q + 1]) < 0) {
t = this._addTriangle(n, i, q, hullTri[i], -1, hullTri[n]);
hullTri[i] = this._legalize(t + 2);
hullNext[n] = n; // mark as removed
hullSize--;
n = q;
}
// walk backward from the other side, adding more triangles and flipping
if (e === start) {
while (q = hullPrev[e], orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) {
t = this._addTriangle(q, i, e, -1, hullTri[e], hullTri[q]);
this._legalize(t + 2);
hullTri[q] = t;
hullNext[e] = e; // mark as removed
hullSize--;
e = q;
}
}
// update the hull indices
this._hullStart = hullPrev[i] = e;
hullNext[e] = hullPrev[n] = i;
hullNext[i] = n;
// save the two new edges in the hash table
hullHash[this._hashKey(x, y)] = i;
hullHash[this._hashKey(coords[2 * e], coords[2 * e + 1])] = e;
}
this.hull = new Uint32Array(hullSize);
for (let i = 0, e = this._hullStart; i < hullSize; i++) {
this.hull[i] = e;
e = hullNext[e];
}
// trim typed triangle mesh arrays
this.triangles = this._triangles.subarray(0, this.trianglesLen);
this.halfedges = this._halfedges.subarray(0, this.trianglesLen);
}
_hashKey(x, y) {
return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize;
}
_legalize(a) {
const {_triangles: triangles, _halfedges: halfedges, coords} = this;
let i = 0;
let ar = 0;
// recursion eliminated with a fixed-size stack
while (true) {
const b = halfedges[a];
/* if the pair of triangles doesn't satisfy the Delaunay condition
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
* then do the same check/flip recursively for the new pair of triangles
*
* pl pl
* /||\ / \
* al/ || \bl al/ \a
* / || \ / \
* / a||b \ flip /___ar___\
* p0\ || /p1 => p0\---bl---/p1
* \ || / \ /
* ar\ || /br b\ /br
* \||/ \ /
* pr pr
*/
const a0 = a - a % 3;
ar = a0 + (a + 2) % 3;
if (b === -1) { // convex hull edge
if (i === 0) break;
a = EDGE_STACK[--i];
continue;
}
const b0 = b - b % 3;
const al = a0 + (a + 1) % 3;
const bl = b0 + (b + 2) % 3;
const p0 = triangles[ar];
const pr = triangles[a];
const pl = triangles[al];
const p1 = triangles[bl];
const illegal = inCircle(
coords[2 * p0], coords[2 * p0 + 1],
coords[2 * pr], coords[2 * pr + 1],
coords[2 * pl], coords[2 * pl + 1],
coords[2 * p1], coords[2 * p1 + 1]);
if (illegal) {
triangles[a] = p1;
triangles[b] = p0;
const hbl = halfedges[bl];
// edge swapped on the other side of the hull (rare); fix the halfedge reference
if (hbl === -1) {
let e = this._hullStart;
do {
if (this._hullTri[e] === bl) {
this._hullTri[e] = a;
break;
}
e = this._hullPrev[e];
} while (e !== this._hullStart);
}
this._link(a, hbl);
this._link(b, halfedges[ar]);
this._link(ar, bl);
const br = b0 + (b + 1) % 3;
// don't worry about hitting the cap: it can only happen on extremely degenerate input
if (i < EDGE_STACK.length) {
EDGE_STACK[i++] = br;
}
} else {
if (i === 0) break;
a = EDGE_STACK[--i];
}
}
return ar;
}
_link(a, b) {
this._halfedges[a] = b;
if (b !== -1) this._halfedges[b] = a;
}
// add a new triangle given vertex indices and adjacent half-edge ids
_addTriangle(i0, i1, i2, a, b, c) {
const t = this.trianglesLen;
this._triangles[t] = i0;
this._triangles[t + 1] = i1;
this._triangles[t + 2] = i2;
this._link(t, a);
this._link(t + 1, b);
this._link(t + 2, c);
this.trianglesLen += 3;
return t;
}
}
// monotonically increases with real angle, but doesn't need expensive trigonometry
function pseudoAngle(dx, dy) {
const p = dx / (Math.abs(dx) + Math.abs(dy));
return (dy > 0 ? 3 - p : 1 + p) / 4; // [0..1]
}
function dist(ax, ay, bx, by) {
const dx = ax - bx;
const dy = ay - by;
return dx * dx + dy * dy;
}
function inCircle(ax, ay, bx, by, cx, cy, px, py) {
const dx = ax - px;
const dy = ay - py;
const ex = bx - px;
const ey = by - py;
const fx = cx - px;
const fy = cy - py;
const ap = dx * dx + dy * dy;
const bp = ex * ex + ey * ey;
const cp = fx * fx + fy * fy;
return dx * (ey * cp - bp * fy) -
dy * (ex * cp - bp * fx) +
ap * (ex * fy - ey * fx) < 0;
}
function circumradius(ax, ay, bx, by, cx, cy) {
const dx = bx - ax;
const dy = by - ay;
const ex = cx - ax;
const ey = cy - ay;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
const d = 0.5 / (dx * ey - dy * ex);
const x = (ey * bl - dy * cl) * d;
const y = (dx * cl - ex * bl) * d;
return x * x + y * y;
}
function circumcenter(ax, ay, bx, by, cx, cy) {
const dx = bx - ax;
const dy = by - ay;
const ex = cx - ax;
const ey = cy - ay;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
const d = 0.5 / (dx * ey - dy * ex);
const x = ax + (ey * bl - dy * cl) * d;
const y = ay + (dx * cl - ex * bl) * d;
return {x, y};
}
function quicksort(ids, dists, left, right) {
if (right - left <= 20) {
for (let i = left + 1; i <= right; i++) {
const temp = ids[i];
const tempDist = dists[temp];
let j = i - 1;
while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--];
ids[j + 1] = temp;
}
} else {
const median = (left + right) >> 1;
let i = left + 1;
let j = right;
swap(ids, median, i);
if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right);
if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right);
if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i);
const temp = ids[i];
const tempDist = dists[temp];
while (true) {
do i++; while (dists[ids[i]] < tempDist);
do j--; while (dists[ids[j]] > tempDist);
if (j < i) break;
swap(ids, i, j);
}
ids[left + 1] = ids[j];
ids[j] = temp;
if (right - i + 1 >= j - left) {
quicksort(ids, dists, i, right);
quicksort(ids, dists, left, j - 1);
} else {
quicksort(ids, dists, left, j - 1);
quicksort(ids, dists, i, right);
}
}
}
function swap(arr, i, j) {
const tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
function defaultGetX(p) {
return p[0];
}
function defaultGetY(p) {
return p[1];
}
const epsilon$2 = 1e-6;
class Path {
constructor() {
this._x0 = this._y0 = // start of current subpath
this._x1 = this._y1 = null; // end of current subpath
this._ = "";
}
moveTo(x, y) {
this._ += `M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
}
closePath() {
if (this._x1 !== null) {
this._x1 = this._x0, this._y1 = this._y0;
this._ += "Z";
}
}
lineTo(x, y) {
this._ += `L${this._x1 = +x},${this._y1 = +y}`;
}
arc(x, y, r) {
x = +x, y = +y, r = +r;
const x0 = x + r;
const y0 = y;
if (r < 0) throw new Error("negative radius");
if (this._x1 === null) this._ += `M${x0},${y0}`;
else if (Math.abs(this._x1 - x0) > epsilon$2 || Math.abs(this._y1 - y0) > epsilon$2) this._ += "L" + x0 + "," + y0;
if (!r) return;
this._ += `A${r},${r},0,1,1,${x - r},${y}A${r},${r},0,1,1,${this._x1 = x0},${this._y1 = y0}`;
}
rect(x, y, w, h) {
this._ += `M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${+w}v${+h}h${-w}Z`;
}
value() {
return this._ || null;
}
}
class Polygon {
constructor() {
this._ = [];
}
moveTo(x, y) {
this._.push([x, y]);
}
closePath() {
this._.push(this._[0].slice());
}
lineTo(x, y) {
this._.push([x, y]);
}
value() {
return this._.length ? this._ : null;
}
}
class Voronoi {
constructor(delaunay, [xmin, ymin, xmax, ymax] = [0, 0, 960, 500]) {
if (!((xmax = +xmax) >= (xmin = +xmin)) || !((ymax = +ymax) >= (ymin = +ymin))) throw new Error("invalid bounds");
this.delaunay = delaunay;
this._circumcenters = new Float64Array(delaunay.points.length * 2);
this.vectors = new Float64Array(delaunay.points.length * 2);
this.xmax = xmax, this.xmin = xmin;
this.ymax = ymax, this.ymin = ymin;
this._init();
}
update() {
this.delaunay.update();
this._init();
return this;
}
_init() {
const {delaunay: {points, hull, triangles}, vectors} = this;
let bx, by; // lazily computed barycenter of the hull
// Compute circumcenters.
const circumcenters = this.circumcenters = this._circumcenters.subarray(0, triangles.length / 3 * 2);
for (let i = 0, j = 0, n = triangles.length, x, y; i < n; i += 3, j += 2) {
const t1 = triangles[i] * 2;
const t2 = triangles[i + 1] * 2;
const t3 = triangles[i + 2] * 2;
const x1 = points[t1];
const y1 = points[t1 + 1];
const x2 = points[t2];
const y2 = points[t2 + 1];
const x3 = points[t3];
const y3 = points[t3 + 1];
const dx = x2 - x1;
const dy = y2 - y1;
const ex = x3 - x1;
const ey = y3 - y1;
const ab = (dx * ey - dy * ex) * 2;
if (Math.abs(ab) < 1e-9) {
// For a degenerate triangle, the circumcenter is at the infinity, in a
// direction orthogonal to the halfedge and away from the “center” of
// the diagram <bx, by>, defined as the hulls barycenter.
if (bx === undefined) {
bx = by = 0;
for (const i of hull) bx += points[i * 2], by += points[i * 2 + 1];
bx /= hull.length, by /= hull.length;
}
const a = 1e9 * Math.sign((bx - x1) * ey - (by - y1) * ex);
x = (x1 + x3) / 2 - a * ey;
y = (y1 + y3) / 2 + a * ex;
} else {
const d = 1 / ab;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
x = x1 + (ey * bl - dy * cl) * d;
y = y1 + (dx * cl - ex * bl) * d;
}
circumcenters[j] = x;
circumcenters[j + 1] = y;
}
// Compute exterior cell rays.
let h = hull[hull.length - 1];
let p0, p1 = h * 4;
let x0, x1 = points[2 * h];
let y0, y1 = points[2 * h + 1];
vectors.fill(0);
for (let i = 0; i < hull.length; ++i) {
h = hull[i];
p0 = p1, x0 = x1, y0 = y1;
p1 = h * 4, x1 = points[2 * h], y1 = points[2 * h + 1];
vectors[p0 + 2] = vectors[p1] = y0 - y1;
vectors[p0 + 3] = vectors[p1 + 1] = x1 - x0;
}
}
render(context) {
const buffer = context == null ? context = new Path : undefined;
const {delaunay: {halfedges, inedges, hull}, circumcenters, vectors} = this;
if (hull.length <= 1) return null;
for (let i = 0, n = halfedges.length; i < n; ++i) {
const j = halfedges[i];
if (j < i) continue;
const ti = Math.floor(i / 3) * 2;
const tj = Math.floor(j / 3) * 2;
const xi = circumcenters[ti];
const yi = circumcenters[ti + 1];
const xj = circumcenters[tj];
const yj = circumcenters[tj + 1];
this._renderSegment(xi, yi, xj, yj, context);
}
let h0, h1 = hull[hull.length - 1];
for (let i = 0; i < hull.length; ++i) {
h0 = h1, h1 = hull[i];
const t = Math.floor(inedges[h1] / 3) * 2;
const x = circumcenters[t];
const y = circumcenters[t + 1];
const v = h0 * 4;
const p = this._project(x, y, vectors[v + 2], vectors[v + 3]);
if (p) this._renderSegment(x, y, p[0], p[1], context);
}
return buffer && buffer.value();
}
renderBounds(context) {
const buffer = context == null ? context = new Path : undefined;
context.rect(this.xmin, this.ymin, this.xmax - this.xmin, this.ymax - this.ymin);
return buffer && buffer.value();
}
renderCell(i, context) {
const buffer = context == null ? context = new Path : undefined;
const points = this._clip(i);
if (points === null || !points.length) return;
context.moveTo(points[0], points[1]);
let n = points.length;
while (points[0] === points[n-2] && points[1] === points[n-1] && n > 1) n -= 2;
for (let i = 2; i < n; i += 2) {
if (points[i] !== points[i-2] || points[i+1] !== points[i-1])
context.lineTo(points[i], points[i + 1]);
}
context.closePath();
return buffer && buffer.value();
}
*cellPolygons() {
const {delaunay: {points}} = this;
for (let i = 0, n = points.length / 2; i < n; ++i) {
const cell = this.cellPolygon(i);
if (cell) cell.index = i, yield cell;
}
}
cellPolygon(i) {
const polygon = new Polygon;
this.renderCell(i, polygon);
return polygon.value();
}
_renderSegment(x0, y0, x1, y1, context) {
let S;
const c0 = this._regioncode(x0, y0);
const c1 = this._regioncode(x1, y1);
if (c0 === 0 && c1 === 0) {
context.moveTo(x0, y0);
context.lineTo(x1, y1);
} else if (S = this._clipSegment(x0, y0, x1, y1, c0, c1)) {
context.moveTo(S[0], S[1]);
context.lineTo(S[2], S[3]);
}
}
contains(i, x, y) {
if ((x = +x, x !== x) || (y = +y, y !== y)) return false;
return this.delaunay._step(i, x, y) === i;
}
*neighbors(i) {
const ci = this._clip(i);
if (ci) for (const j of this.delaunay.neighbors(i)) {
const cj = this._clip(j);
// find the common edge
if (cj) loop: for (let ai = 0, li = ci.length; ai < li; ai += 2) {
for (let aj = 0, lj = cj.length; aj < lj; aj += 2) {
if (ci[ai] === cj[aj]
&& ci[ai + 1] === cj[aj + 1]
&& ci[(ai + 2) % li] === cj[(aj + lj - 2) % lj]
&& ci[(ai + 3) % li] === cj[(aj + lj - 1) % lj]) {
yield j;
break loop;
}
}
}
}
}
_cell(i) {
const {circumcenters, delaunay: {inedges, halfedges, triangles}} = this;
const e0 = inedges[i];
if (e0 === -1) return null; // coincident point
const points = [];
let e = e0;
do {
const t = Math.floor(e / 3);
points.push(circumcenters[t * 2], circumcenters[t * 2 + 1]);
e = e % 3 === 2 ? e - 2 : e + 1;
if (triangles[e] !== i) break; // bad triangulation
e = halfedges[e];
} while (e !== e0 && e !== -1);
return points;
}
_clip(i) {
// degenerate case (1 valid point: return the box)
if (i === 0 && this.delaunay.hull.length === 1) {
return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin];
}
const points = this._cell(i);
if (points === null) return null;
const {vectors: V} = this;
const v = i * 4;
return this._simplify(V[v] || V[v + 1]
? this._clipInfinite(i, points, V[v], V[v + 1], V[v + 2], V[v + 3])
: this._clipFinite(i, points));
}
_clipFinite(i, points) {
const n = points.length;
let P = null;
let x0, y0, x1 = points[n - 2], y1 = points[n - 1];
let c0, c1 = this._regioncode(x1, y1);
let e0, e1 = 0;
for (let j = 0; j < n; j += 2) {
x0 = x1, y0 = y1, x1 = points[j], y1 = points[j + 1];
c0 = c1, c1 = this._regioncode(x1, y1);
if (c0 === 0 && c1 === 0) {
e0 = e1, e1 = 0;
if (P) P.push(x1, y1);
else P = [x1, y1];
} else {
let S, sx0, sy0, sx1, sy1;
if (c0 === 0) {
if ((S = this._clipSegment(x0, y0, x1, y1, c0, c1)) === null) continue;
[sx0, sy0, sx1, sy1] = S;
} else {
if ((S = this._clipSegment(x1, y1, x0, y0, c1, c0)) === null) continue;
[sx1, sy1, sx0, sy0] = S;
e0 = e1, e1 = this._edgecode(sx0, sy0);
if (e0 && e1) this._edge(i, e0, e1, P, P.length);
if (P) P.push(sx0, sy0);
else P = [sx0, sy0];
}
e0 = e1, e1 = this._edgecode(sx1, sy1);
if (e0 && e1) this._edge(i, e0, e1, P, P.length);
if (P) P.push(sx1, sy1);
else P = [sx1, sy1];
}
}
if (P) {
e0 = e1, e1 = this._edgecode(P[0], P[1]);
if (e0 && e1) this._edge(i, e0, e1, P, P.length);
} else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) {
return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin];
}
return P;
}
_clipSegment(x0, y0, x1, y1, c0, c1) {
// for more robustness, always consider the segment in the same order
const flip = c0 < c1;
if (flip) [x0, y0, x1, y1, c0, c1] = [x1, y1, x0, y0, c1, c0];
while (true) {
if (c0 === 0 && c1 === 0) return flip ? [x1, y1, x0, y0] : [x0, y0, x1, y1];
if (c0 & c1) return null;
let x, y, c = c0 || c1;
if (c & 0b1000) x = x0 + (x1 - x0) * (this.ymax - y0) / (y1 - y0), y = this.ymax;
else if (c & 0b0100) x = x0 + (x1 - x0) * (this.ymin - y0) / (y1 - y0), y = this.ymin;
else if (c & 0b0010) y = y0 + (y1 - y0) * (this.xmax - x0) / (x1 - x0), x = this.xmax;
else y = y0 + (y1 - y0) * (this.xmin - x0) / (x1 - x0), x = this.xmin;
if (c0) x0 = x, y0 = y, c0 = this._regioncode(x0, y0);
else x1 = x, y1 = y, c1 = this._regioncode(x1, y1);
}
}
_clipInfinite(i, points, vx0, vy0, vxn, vyn) {
let P = Array.from(points), p;
if (p = this._project(P[0], P[1], vx0, vy0)) P.unshift(p[0], p[1]);
if (p = this._project(P[P.length - 2], P[P.length - 1], vxn, vyn)) P.push(p[0], p[1]);
if (P = this._clipFinite(i, P)) {
for (let j = 0, n = P.length, c0, c1 = this._edgecode(P[n - 2], P[n - 1]); j < n; j += 2) {
c0 = c1, c1 = this._edgecode(P[j], P[j + 1]);
if (c0 && c1) j = this._edge(i, c0, c1, P, j), n = P.length;
}
} else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) {
P = [this.xmin, this.ymin, this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax];
}
return P;
}
_edge(i, e0, e1, P, j) {
while (e0 !== e1) {
let x, y;
switch (e0) {
case 0b0101: e0 = 0b0100; continue; // top-left
case 0b0100: e0 = 0b0110, x = this.xmax, y = this.ymin; break; // top
case 0b0110: e0 = 0b0010; continue; // top-right
case 0b0010: e0 = 0b1010, x = this.xmax, y = this.ymax; break; // right
case 0b1010: e0 = 0b1000; continue; // bottom-right
case 0b1000: e0 = 0b1001, x = this.xmin, y = this.ymax; break; // bottom
case 0b1001: e0 = 0b0001; continue; // bottom-left
case 0b0001: e0 = 0b0101, x = this.xmin, y = this.ymin; break; // left
}
// Note: this implicitly checks for out of bounds: if P[j] or P[j+1] are
// undefined, the conditional statement will be executed.
if ((P[j] !== x || P[j + 1] !== y) && this.contains(i, x, y)) {
P.splice(j, 0, x, y), j += 2;
}
}
return j;
}
_project(x0, y0, vx, vy) {
let t = Infinity, c, x, y;
if (vy < 0) { // top
if (y0 <= this.ymin) return null;
if ((c = (this.ymin - y0) / vy) < t) y = this.ymin, x = x0 + (t = c) * vx;
} else if (vy > 0) { // bottom
if (y0 >= this.ymax) return null;
if ((c = (this.ymax - y0) / vy) < t) y = this.ymax, x = x0 + (t = c) * vx;
}
if (vx > 0) { // right
if (x0 >= this.xmax) return null;
if ((c = (this.xmax - x0) / vx) < t) x = this.xmax, y = y0 + (t = c) * vy;
} else if (vx < 0) { // left
if (x0 <= this.xmin) return null;
if ((c = (this.xmin - x0) / vx) < t) x = this.xmin, y = y0 + (t = c) * vy;
}
return [x, y];
}
_edgecode(x, y) {
return (x === this.xmin ? 0b0001
: x === this.xmax ? 0b0010 : 0b0000)
| (y === this.ymin ? 0b0100
: y === this.ymax ? 0b1000 : 0b0000);
}
_regioncode(x, y) {
return (x < this.xmin ? 0b0001
: x > this.xmax ? 0b0010 : 0b0000)
| (y < this.ymin ? 0b0100
: y > this.ymax ? 0b1000 : 0b0000);
}
_simplify(P) {
if (P && P.length > 4) {
for (let i = 0; i < P.length; i+= 2) {
const j = (i + 2) % P.length, k = (i + 4) % P.length;
if (P[i] === P[j] && P[j] === P[k] || P[i + 1] === P[j + 1] && P[j + 1] === P[k + 1]) {
P.splice(j, 2), i -= 2;
}
}
if (!P.length) P = null;
}
return P;
}
}
const tau$2 = 2 * Math.PI, pow$2 = Math.pow;
function pointX(p) {
return p[0];
}
function pointY(p) {
return p[1];
}
// A triangulation is collinear if all its triangles have a non-null area
function collinear(d) {
const {triangles, coords} = d;
for (let i = 0; i < triangles.length; i += 3) {
const a = 2 * triangles[i],
b = 2 * triangles[i + 1],
c = 2 * triangles[i + 2],
cross = (coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1])
- (coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1]);
if (cross > 1e-10) return false;
}
return true;
}
function jitter(x, y, r) {
return [x + Math.sin(x + y) * r, y + Math.cos(x - y) * r];
}
class Delaunay {
static from(points, fx = pointX, fy = pointY, that) {
return new Delaunay("length" in points
? flatArray(points, fx, fy, that)
: Float64Array.from(flatIterable(points, fx, fy, that)));
}
constructor(points) {
this._delaunator = new Delaunator(points);
this.inedges = new Int32Array(points.length / 2);
this._hullIndex = new Int32Array(points.length / 2);
this.points = this._delaunator.coords;
this._init();
}
update() {
this._delaunator.update();
this._init();
return this;
}
_init() {
const d = this._delaunator, points = this.points;
// check for collinear
if (d.hull && d.hull.length > 2 && collinear(d)) {
this.collinear = Int32Array.from({length: points.length/2}, (_,i) => i)
.sort((i, j) => points[2 * i] - points[2 * j] || points[2 * i + 1] - points[2 * j + 1]); // for exact neighbors
const e = this.collinear[0], f = this.collinear[this.collinear.length - 1],
bounds = [ points[2 * e], points[2 * e + 1], points[2 * f], points[2 * f + 1] ],
r = 1e-8 * Math.hypot(bounds[3] - bounds[1], bounds[2] - bounds[0]);
for (let i = 0, n = points.length / 2; i < n; ++i) {
const p = jitter(points[2 * i], points[2 * i + 1], r);
points[2 * i] = p[0];
points[2 * i + 1] = p[1];
}
this._delaunator = new Delaunator(points);
} else {
delete this.collinear;
}
const halfedges = this.halfedges = this._delaunator.halfedges;
const hull = this.hull = this._delaunator.hull;
const triangles = this.triangles = this._delaunator.triangles;
const inedges = this.inedges.fill(-1);
const hullIndex = this._hullIndex.fill(-1);
// Compute an index from each point to an (arbitrary) incoming halfedge
// Used to give the first neighbor of each point; for this reason,
// on the hull we give priority to exterior halfedges
for (let e = 0, n = halfedges.length; e < n; ++e) {
const p = triangles[e % 3 === 2 ? e - 2 : e + 1];
if (halfedges[e] === -1 || inedges[p] === -1) inedges[p] = e;
}
for (let i = 0, n = hull.length; i < n; ++i) {
hullIndex[hull[i]] = i;
}
// degenerate case: 1 or 2 (distinct) points
if (hull.length <= 2 && hull.length > 0) {
this.triangles = new Int32Array(3).fill(-1);
this.halfedges = new Int32Array(3).fill(-1);
this.triangles[0] = hull[0];
inedges[hull[0]] = 1;
if (hull.length === 2) {
inedges[hull[1]] = 0;
this.triangles[1] = hull[1];
this.triangles[2] = hull[1];
}
}
}
voronoi(bounds) {
return new Voronoi(this, bounds);
}
*neighbors(i) {
const {inedges, hull, _hullIndex, halfedges, triangles, collinear} = this;
// degenerate case with several collinear points
if (collinear) {
const l = collinear.indexOf(i);
if (l > 0) yield collinear[l - 1];
if (l < collinear.length - 1) yield collinear[l + 1];
return;
}
const e0 = inedges[i];
if (e0 === -1) return; // coincident point
let e = e0, p0 = -1;
do {
yield p0 = triangles[e];
e = e % 3 === 2 ? e - 2 : e + 1;
if (triangles[e] !== i) return; // bad triangulation
e = halfedges[e];
if (e === -1) {
const p = hull[(_hullIndex[i] + 1) % hull.length];
if (p !== p0) yield p;
return;
}
} while (e !== e0);
}
find(x, y, i = 0) {
if ((x = +x, x !== x) || (y = +y, y !== y)) return -1;
const i0 = i;
let c;
while ((c = this._step(i, x, y)) >= 0 && c !== i && c !== i0) i = c;
return c;
}
_step(i, x, y) {
const {inedges, hull, _hullIndex, halfedges, triangles, points} = this;
if (inedges[i] === -1 || !points.length) return (i + 1) % (points.length >> 1);
let c = i;
let dc = pow$2(x - points[i * 2], 2) + pow$2(y - points[i * 2 + 1], 2);
const e0 = inedges[i];
let e = e0;
do {
let t = triangles[e];
const dt = pow$2(x - points[t * 2], 2) + pow$2(y - points[t * 2 + 1], 2);
if (dt < dc) dc = dt, c = t;
e = e % 3 === 2 ? e - 2 : e + 1;
if (triangles[e] !== i) break; // bad triangulation
e = halfedges[e];
if (e === -1) {
e = hull[(_hullIndex[i] + 1) % hull.length];
if (e !== t) {
if (pow$2(x - points[e * 2], 2) + pow$2(y - points[e * 2 + 1], 2) < dc) return e;
}
break;
}
} while (e !== e0);
return c;
}
render(context) {
const buffer = context == null ? context = new Path : undefined;
const {points, halfedges, triangles} = this;
for (let i = 0, n = halfedges.length; i < n; ++i) {
const j = halfedges[i];
if (j < i) continue;
const ti = triangles[i] * 2;
const tj = triangles[j] * 2;
context.moveTo(points[ti], points[ti + 1]);
context.lineTo(points[tj], points[tj + 1]);
}
this.renderHull(context);
return buffer && buffer.value();
}
renderPoints(context, r) {
if (r === undefined && (!context || typeof context.moveTo !== "function")) r = context, context = null;
r = r == undefined ? 2 : +r;
const buffer = context == null ? context = new Path : undefined;
const {points} = this;
for (let i = 0, n = points.length; i < n; i += 2) {
const x = points[i], y = points[i + 1];
context.moveTo(x + r, y);
context.arc(x, y, r, 0, tau$2);
}
return buffer && buffer.value();
}
renderHull(context) {
const buffer = context == null ? context = new Path : undefined;
const {hull, points} = this;
const h = hull[0] * 2, n = hull.length;
context.moveTo(points[h], points[h + 1]);
for (let i = 1; i < n; ++i) {
const h = 2 * hull[i];
context.lineTo(points[h], points[h + 1]);
}
context.closePath();
return buffer && buffer.value();
}
hullPolygon() {
const polygon = new Polygon;
this.renderHull(polygon);
return polygon.value();
}
renderTriangle(i, context) {
const buffer = context == null ? context = new Path : undefined;
const {points, triangles} = this;
const t0 = triangles[i *= 3] * 2;
const t1 = triangles[i + 1] * 2;
const t2 = triangles[i + 2] * 2;
context.moveTo(points[t0], points[t0 + 1]);
context.lineTo(points[t1], points[t1 + 1]);
context.lineTo(points[t2], points[t2 + 1]);
context.closePath();
return buffer && buffer.value();
}
*trianglePolygons() {
const {triangles} = this;
for (let i = 0, n = triangles.length / 3; i < n; ++i) {
yield this.trianglePolygon(i);
}
}
trianglePolygon(i) {
const polygon = new Polygon;
this.renderTriangle(i, polygon);
return polygon.value();
}
}
function flatArray(points, fx, fy, that) {
const n = points.length;
const array = new Float64Array(n * 2);
for (let i = 0; i < n; ++i) {
const p = points[i];
array[i * 2] = fx.call(that, p, i, points);
array[i * 2 + 1] = fy.call(that, p, i, points);
}
return array;
}
function* flatIterable(points, fx, fy, that) {
let i = 0;
for (const p of points) {
yield fx.call(that, p, i, points);
yield fy.call(that, p, i, points);
++i;
}
}
var EOL = {},
EOF = {},
QUOTE = 34,
NEWLINE = 10,
RETURN = 13;
function objectConverter(columns) {
return new Function("d", "return {" + columns.map(function(name, i) {
return JSON.stringify(name) + ": d[" + i + "] || \"\"";
}).join(",") + "}");
}
function customConverter(columns, f) {
var object = objectConverter(columns);
return function(row, i) {
return f(object(row), i, columns);
};
}
// Compute unique columns in order of discovery.
function inferColumns(rows) {
var columnSet = Object.create(null),
columns = [];
rows.forEach(function(row) {
for (var column in row) {
if (!(column in columnSet)) {
columns.push(columnSet[column] = column);
}
}
});
return columns;
}
function pad$1(value, width) {
var s = value + "", length = s.length;
return length < width ? new Array(width - length + 1).join(0) + s : s;
}
function formatYear$1(year) {
return year < 0 ? "-" + pad$1(-year, 6)
: year > 9999 ? "+" + pad$1(year, 6)
: pad$1(year, 4);
}
function formatDate(date) {
var hours = date.getUTCHours(),
minutes = date.getUTCMinutes(),
seconds = date.getUTCSeconds(),
milliseconds = date.getUTCMilliseconds();
return isNaN(date) ? "Invalid Date"
: formatYear$1(date.getUTCFullYear()) + "-" + pad$1(date.getUTCMonth() + 1, 2) + "-" + pad$1(date.getUTCDate(), 2)
+ (milliseconds ? "T" + pad$1(hours, 2) + ":" + pad$1(minutes, 2) + ":" + pad$1(seconds, 2) + "." + pad$1(milliseconds, 3) + "Z"
: seconds ? "T" + pad$1(hours, 2) + ":" + pad$1(minutes, 2) + ":" + pad$1(seconds, 2) + "Z"
: minutes || hours ? "T" + pad$1(hours, 2) + ":" + pad$1(minutes, 2) + "Z"
: "");
}
function dsvFormat(delimiter) {
var reFormat = new RegExp("[\"" + delimiter + "\n\r]"),
DELIMITER = delimiter.charCodeAt(0);
function parse(text, f) {
var convert, columns, rows = parseRows(text, function(row, i) {
if (convert) return convert(row, i - 1);
columns = row, convert = f ? customConverter(row, f) : objectConverter(row);
});
rows.columns = columns || [];
return rows;
}
function parseRows(text, f) {
var rows = [], // output rows
N = text.length,
I = 0, // current character index
n = 0, // current line number
t, // current token
eof = N <= 0, // current token followed by EOF?
eol = false; // current token followed by EOL?
// Strip the trailing newline.
if (text.charCodeAt(N - 1) === NEWLINE) --N;
if (text.charCodeAt(N - 1) === RETURN) --N;
function token() {
if (eof) return EOF;
if (eol) return eol = false, EOL;
// Unescape quotes.
var i, j = I, c;
if (text.charCodeAt(j) === QUOTE) {
while (I++ < N && text.charCodeAt(I) !== QUOTE || text.charCodeAt(++I) === QUOTE);
if ((i = I) >= N) eof = true;
else if ((c = text.charCodeAt(I++)) === NEWLINE) eol = true;
else if (c === RETURN) { eol = true; if (text.charCodeAt(I) === NEWLINE) ++I; }
return text.slice(j + 1, i - 1).replace(/""/g, "\"");
}
// Find next delimiter or newline.
while (I < N) {
if ((c = text.charCodeAt(i = I++)) === NEWLINE) eol = true;
else if (c === RETURN) { eol = true; if (text.charCodeAt(I) === NEWLINE) ++I; }
else if (c !== DELIMITER) continue;
return text.slice(j, i);
}
// Return last token before EOF.
return eof = true, text.slice(j, N);
}
while ((t = token()) !== EOF) {
var row = [];
while (t !== EOL && t !== EOF) row.push(t), t = token();
if (f && (row = f(row, n++)) == null) continue;
rows.push(row);
}
return rows;
}
function preformatBody(rows, columns) {
return rows.map(function(row) {
return columns.map(function(column) {
return formatValue(row[column]);
}).join(delimiter);
});
}
function format(rows, columns) {
if (columns == null) columns = inferColumns(rows);
return [columns.map(formatValue).join(delimiter)].concat(preformatBody(rows, columns)).join("\n");
}
function formatBody(rows, columns) {
if (columns == null) columns = inferColumns(rows);
return preformatBody(rows, columns).join("\n");
}
function formatRows(rows) {
return rows.map(formatRow).join("\n");
}
function formatRow(row) {
return row.map(formatValue).join(delimiter);
}
function formatValue(value) {
return value == null ? ""
: value instanceof Date ? formatDate(value)
: reFormat.test(value += "") ? "\"" + value.replace(/"/g, "\"\"") + "\""
: value;
}
return {
parse: parse,
parseRows: parseRows,
format: format,
formatBody: formatBody,
formatRows: formatRows,
formatRow: formatRow,
formatValue: formatValue
};
}
var csv$1 = dsvFormat(",");
var csvParse = csv$1.parse;
var csvParseRows = csv$1.parseRows;
var csvFormat = csv$1.format;
var csvFormatBody = csv$1.formatBody;
var csvFormatRows = csv$1.formatRows;
var csvFormatRow = csv$1.formatRow;
var csvFormatValue = csv$1.formatValue;
var tsv$1 = dsvFormat("\t");
var tsvParse = tsv$1.parse;
var tsvParseRows = tsv$1.parseRows;
var tsvFormat = tsv$1.format;
var tsvFormatBody = tsv$1.formatBody;
var tsvFormatRows = tsv$1.formatRows;
var tsvFormatRow = tsv$1.formatRow;
var tsvFormatValue = tsv$1.formatValue;
function autoType(object) {
for (var key in object) {
var value = object[key].trim(), number, m;
if (!value) value = null;
else if (value === "true") value = true;
else if (value === "false") value = false;
else if (value === "NaN") value = NaN;
else if (!isNaN(number = +value)) value = number;
else if (m = value.match(/^([-+]\d{2})?\d{4}(-\d{2}(-\d{2})?)?(T\d{2}:\d{2}(:\d{2}(\.\d{3})?)?(Z|[-+]\d{2}:\d{2})?)?$/)) {
if (fixtz && !!m[4] && !m[7]) value = value.replace(/-/g, "/").replace(/T/, " ");
value = new Date(value);
}
else continue;
object[key] = value;
}
return object;
}
// https://github.com/d3/d3-dsv/issues/45
const fixtz = new Date("2019-01-01T00:00").getHours() || new Date("2019-07-01T00:00").getHours();
function responseBlob(response) {
if (!response.ok) throw new Error(response.status + " " + response.statusText);
return response.blob();
}
function blob(input, init) {
return fetch(input, init).then(responseBlob);
}
function responseArrayBuffer(response) {
if (!response.ok) throw new Error(response.status + " " + response.statusText);
return response.arrayBuffer();
}
function buffer(input, init) {
return fetch(input, init).then(responseArrayBuffer);
}
function responseText(response) {
if (!response.ok) throw new Error(response.status + " " + response.statusText);
return response.text();
}
function text(input, init) {
return fetch(input, init).then(responseText);
}
function dsvParse(parse) {
return function(input, init, row) {
if (arguments.length === 2 && typeof init === "function") row = init, init = undefined;
return text(input, init).then(function(response) {
return parse(response, row);
});
};
}
function dsv(delimiter, input, init, row) {
if (arguments.length === 3 && typeof init === "function") row = init, init = undefined;
var format = dsvFormat(delimiter);
return text(input, init).then(function(response) {
return format.parse(response, row);
});
}
var csv = dsvParse(csvParse);
var tsv = dsvParse(tsvParse);
function image(input, init) {
return new Promise(function(resolve, reject) {
var image = new Image;
for (var key in init) image[key] = init[key];
image.onerror = reject;
image.onload = function() { resolve(image); };
image.src = input;
});
}
function responseJson(response) {
if (!response.ok) throw new Error(response.status + " " + response.statusText);
if (response.status === 204 || response.status === 205) return;
return response.json();
}
function json(input, init) {
return fetch(input, init).then(responseJson);
}
function parser(type) {
return (input, init) => text(input, init)
.then(text => (new DOMParser).parseFromString(text, type));
}
var xml = parser("application/xml");
var html = parser("text/html");
var svg = parser("image/svg+xml");
function center(x, y) {
var nodes, strength = 1;
if (x == null) x = 0;
if (y == null) y = 0;
function force() {
var i,
n = nodes.length,
node,
sx = 0,
sy = 0;
for (i = 0; i < n; ++i) {
node = nodes[i], sx += node.x, sy += node.y;
}
for (sx = (sx / n - x) * strength, sy = (sy / n - y) * strength, i = 0; i < n; ++i) {
node = nodes[i], node.x -= sx, node.y -= sy;
}
}
force.initialize = function(_) {
nodes = _;
};
force.x = function(_) {
return arguments.length ? (x = +_, force) : x;
};
force.y = function(_) {
return arguments.length ? (y = +_, force) : y;
};
force.strength = function(_) {
return arguments.length ? (strength = +_, force) : strength;
};
return force;
}
function tree_add(d) {
const x = +this._x.call(null, d),
y = +this._y.call(null, d);
return add(this.cover(x, y), x, y, d);
}
function add(tree, x, y, d) {
if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points
var parent,
node = tree._root,
leaf = {data: d},
x0 = tree._x0,
y0 = tree._y0,
x1 = tree._x1,
y1 = tree._y1,
xm,
ym,
xp,
yp,
right,
bottom,
i,
j;
// If the tree is empty, initialize the root as a leaf.
if (!node) return tree._root = leaf, tree;
// Find the existing leaf for the new point, or add it.
while (node.length) {
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree;
}
// Is the new point is exactly coincident with the existing point?
xp = +tree._x.call(null, node.data);
yp = +tree._y.call(null, node.data);
if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree;
// Otherwise, split the leaf node until the old and new point are separated.
do {
parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4);
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
} while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm)));
return parent[j] = node, parent[i] = leaf, tree;
}
function addAll(data) {
var d, i, n = data.length,
x,
y,
xz = new Array(n),
yz = new Array(n),
x0 = Infinity,
y0 = Infinity,
x1 = -Infinity,
y1 = -Infinity;
// Compute the points and their extent.
for (i = 0; i < n; ++i) {
if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue;
xz[i] = x;
yz[i] = y;
if (x < x0) x0 = x;
if (x > x1) x1 = x;
if (y < y0) y0 = y;
if (y > y1) y1 = y;
}
// If there were no (valid) points, abort.
if (x0 > x1 || y0 > y1) return this;
// Expand the tree to cover the new points.
this.cover(x0, y0).cover(x1, y1);
// Add the new points.
for (i = 0; i < n; ++i) {
add(this, xz[i], yz[i], data[i]);
}
return this;
}
function tree_cover(x, y) {
if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points
var x0 = this._x0,
y0 = this._y0,
x1 = this._x1,
y1 = this._y1;
// If the quadtree has no extent, initialize them.
// Integer extent are necessary so that if we later double the extent,
// the existing quadrant boundaries dont change due to floating point error!
if (isNaN(x0)) {
x1 = (x0 = Math.floor(x)) + 1;
y1 = (y0 = Math.floor(y)) + 1;
}
// Otherwise, double repeatedly to cover.
else {
var z = x1 - x0 || 1,
node = this._root,
parent,
i;
while (x0 > x || x >= x1 || y0 > y || y >= y1) {
i = (y < y0) << 1 | (x < x0);
parent = new Array(4), parent[i] = node, node = parent, z *= 2;
switch (i) {
case 0: x1 = x0 + z, y1 = y0 + z; break;
case 1: x0 = x1 - z, y1 = y0 + z; break;
case 2: x1 = x0 + z, y0 = y1 - z; break;
case 3: x0 = x1 - z, y0 = y1 - z; break;
}
}
if (this._root && this._root.length) this._root = node;
}
this._x0 = x0;
this._y0 = y0;
this._x1 = x1;
this._y1 = y1;
return this;
}
function tree_data() {
var data = [];
this.visit(function(node) {
if (!node.length) do data.push(node.data); while (node = node.next)
});
return data;
}
function tree_extent(_) {
return arguments.length
? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1])
: isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]];
}
function Quad(node, x0, y0, x1, y1) {
this.node = node;
this.x0 = x0;
this.y0 = y0;
this.x1 = x1;
this.y1 = y1;
}
function tree_find(x, y, radius) {
var data,
x0 = this._x0,
y0 = this._y0,
x1,
y1,
x2,
y2,
x3 = this._x1,
y3 = this._y1,
quads = [],
node = this._root,
q,
i;
if (node) quads.push(new Quad(node, x0, y0, x3, y3));
if (radius == null) radius = Infinity;
else {
x0 = x - radius, y0 = y - radius;
x3 = x + radius, y3 = y + radius;
radius *= radius;
}
while (q = quads.pop()) {
// Stop searching if this quadrant cant contain a closer node.
if (!(node = q.node)
|| (x1 = q.x0) > x3
|| (y1 = q.y0) > y3
|| (x2 = q.x1) < x0
|| (y2 = q.y1) < y0) continue;
// Bisect the current quadrant.
if (node.length) {
var xm = (x1 + x2) / 2,
ym = (y1 + y2) / 2;
quads.push(
new Quad(node[3], xm, ym, x2, y2),
new Quad(node[2], x1, ym, xm, y2),
new Quad(node[1], xm, y1, x2, ym),
new Quad(node[0], x1, y1, xm, ym)
);
// Visit the closest quadrant first.
if (i = (y >= ym) << 1 | (x >= xm)) {
q = quads[quads.length - 1];
quads[quads.length - 1] = quads[quads.length - 1 - i];
quads[quads.length - 1 - i] = q;
}
}
// Visit this point. (Visiting coincident points isnt necessary!)
else {
var dx = x - +this._x.call(null, node.data),
dy = y - +this._y.call(null, node.data),
d2 = dx * dx + dy * dy;
if (d2 < radius) {
var d = Math.sqrt(radius = d2);
x0 = x - d, y0 = y - d;
x3 = x + d, y3 = y + d;
data = node.data;
}
}
}
return data;
}
function tree_remove(d) {
if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points
var parent,
node = this._root,
retainer,
previous,
next,
x0 = this._x0,
y0 = this._y0,
x1 = this._x1,
y1 = this._y1,
x,
y,
xm,
ym,
right,
bottom,
i,
j;
// If the tree is empty, initialize the root as a leaf.
if (!node) return this;
// Find the leaf node for the point.
// While descending, also retain the deepest parent with a non-removed sibling.
if (node.length) while (true) {
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
if (!(parent = node, node = node[i = bottom << 1 | right])) return this;
if (!node.length) break;
if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i;
}
// Find the point to remove.
while (node.data !== d) if (!(previous = node, node = node.next)) return this;
if (next = node.next) delete node.next;
// If there are multiple coincident points, remove just the point.
if (previous) return (next ? previous.next = next : delete previous.next), this;
// If this is the root point, remove it.
if (!parent) return this._root = next, this;
// Remove this leaf.
next ? parent[i] = next : delete parent[i];
// If the parent now contains exactly one leaf, collapse superfluous parents.
if ((node = parent[0] || parent[1] || parent[2] || parent[3])
&& node === (parent[3] || parent[2] || parent[1] || parent[0])
&& !node.length) {
if (retainer) retainer[j] = node;
else this._root = node;
}
return this;
}
function removeAll(data) {
for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]);
return this;
}
function tree_root() {
return this._root;
}
function tree_size() {
var size = 0;
this.visit(function(node) {
if (!node.length) do ++size; while (node = node.next)
});
return size;
}
function tree_visit(callback) {
var quads = [], q, node = this._root, child, x0, y0, x1, y1;
if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1));
while (q = quads.pop()) {
if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) {
var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
}
}
return this;
}
function tree_visitAfter(callback) {
var quads = [], next = [], q;
if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1));
while (q = quads.pop()) {
var node = q.node;
if (node.length) {
var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
}
next.push(q);
}
while (q = next.pop()) {
callback(q.node, q.x0, q.y0, q.x1, q.y1);
}
return this;
}
function defaultX(d) {
return d[0];
}
function tree_x(_) {
return arguments.length ? (this._x = _, this) : this._x;
}
function defaultY(d) {
return d[1];
}
function tree_y(_) {
return arguments.length ? (this._y = _, this) : this._y;
}
function quadtree(nodes, x, y) {
var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN);
return nodes == null ? tree : tree.addAll(nodes);
}
function Quadtree(x, y, x0, y0, x1, y1) {
this._x = x;
this._y = y;
this._x0 = x0;
this._y0 = y0;
this._x1 = x1;
this._y1 = y1;
this._root = undefined;
}
function leaf_copy(leaf) {
var copy = {data: leaf.data}, next = copy;
while (leaf = leaf.next) next = next.next = {data: leaf.data};
return copy;
}
var treeProto = quadtree.prototype = Quadtree.prototype;
treeProto.copy = function() {
var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1),
node = this._root,
nodes,
child;
if (!node) return copy;
if (!node.length) return copy._root = leaf_copy(node), copy;
nodes = [{source: node, target: copy._root = new Array(4)}];
while (node = nodes.pop()) {
for (var i = 0; i < 4; ++i) {
if (child = node.source[i]) {
if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)});
else node.target[i] = leaf_copy(child);
}
}
}
return copy;
};
treeProto.add = tree_add;
treeProto.addAll = addAll;
treeProto.cover = tree_cover;
treeProto.data = tree_data;
treeProto.extent = tree_extent;
treeProto.find = tree_find;
treeProto.remove = tree_remove;
treeProto.removeAll = removeAll;
treeProto.root = tree_root;
treeProto.size = tree_size;
treeProto.visit = tree_visit;
treeProto.visitAfter = tree_visitAfter;
treeProto.x = tree_x;
treeProto.y = tree_y;
function constant$4(x) {
return function() {
return x;
};
}
function jiggle(random) {
return (random() - 0.5) * 1e-6;
}
function x$3(d) {
return d.x + d.vx;
}
function y$3(d) {
return d.y + d.vy;
}
function collide(radius) {
var nodes,
radii,
random,
strength = 1,
iterations = 1;
if (typeof radius !== "function") radius = constant$4(radius == null ? 1 : +radius);
function force() {
var i, n = nodes.length,
tree,
node,
xi,
yi,
ri,
ri2;
for (var k = 0; k < iterations; ++k) {
tree = quadtree(nodes, x$3, y$3).visitAfter(prepare);
for (i = 0; i < n; ++i) {
node = nodes[i];
ri = radii[node.index], ri2 = ri * ri;
xi = node.x + node.vx;
yi = node.y + node.vy;
tree.visit(apply);
}
}
function apply(quad, x0, y0, x1, y1) {
var data = quad.data, rj = quad.r, r = ri + rj;
if (data) {
if (data.index > node.index) {
var x = xi - data.x - data.vx,
y = yi - data.y - data.vy,
l = x * x + y * y;
if (l < r * r) {
if (x === 0) x = jiggle(random), l += x * x;
if (y === 0) y = jiggle(random), l += y * y;
l = (r - (l = Math.sqrt(l))) / l * strength;
node.vx += (x *= l) * (r = (rj *= rj) / (ri2 + rj));
node.vy += (y *= l) * r;
data.vx -= x * (r = 1 - r);
data.vy -= y * r;
}
}
return;
}
return x0 > xi + r || x1 < xi - r || y0 > yi + r || y1 < yi - r;
}
}
function prepare(quad) {
if (quad.data) return quad.r = radii[quad.data.index];
for (var i = quad.r = 0; i < 4; ++i) {
if (quad[i] && quad[i].r > quad.r) {
quad.r = quad[i].r;
}
}
}
function initialize() {
if (!nodes) return;
var i, n = nodes.length, node;
radii = new Array(n);
for (i = 0; i < n; ++i) node = nodes[i], radii[node.index] = +radius(node, i, nodes);
}
force.initialize = function(_nodes, _random) {
nodes = _nodes;
random = _random;
initialize();
};
force.iterations = function(_) {
return arguments.length ? (iterations = +_, force) : iterations;
};
force.strength = function(_) {
return arguments.length ? (strength = +_, force) : strength;
};
force.radius = function(_) {
return arguments.length ? (radius = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : radius;
};
return force;
}
function index$3(d) {
return d.index;
}
function find(nodeById, nodeId) {
var node = nodeById.get(nodeId);
if (!node) throw new Error("node not found: " + nodeId);
return node;
}
function link$2(links) {
var id = index$3,
strength = defaultStrength,
strengths,
distance = constant$4(30),
distances,
nodes,
count,
bias,
random,
iterations = 1;
if (links == null) links = [];
function defaultStrength(link) {
return 1 / Math.min(count[link.source.index], count[link.target.index]);
}
function force(alpha) {
for (var k = 0, n = links.length; k < iterations; ++k) {
for (var i = 0, link, source, target, x, y, l, b; i < n; ++i) {
link = links[i], source = link.source, target = link.target;
x = target.x + target.vx - source.x - source.vx || jiggle(random);
y = target.y + target.vy - source.y - source.vy || jiggle(random);
l = Math.sqrt(x * x + y * y);
l = (l - distances[i]) / l * alpha * strengths[i];
x *= l, y *= l;
target.vx -= x * (b = bias[i]);
target.vy -= y * b;
source.vx += x * (b = 1 - b);
source.vy += y * b;
}
}
}
function initialize() {
if (!nodes) return;
var i,
n = nodes.length,
m = links.length,
nodeById = new Map(nodes.map((d, i) => [id(d, i, nodes), d])),
link;
for (i = 0, count = new Array(n); i < m; ++i) {
link = links[i], link.index = i;
if (typeof link.source !== "object") link.source = find(nodeById, link.source);
if (typeof link.target !== "object") link.target = find(nodeById, link.target);
count[link.source.index] = (count[link.source.index] || 0) + 1;
count[link.target.index] = (count[link.target.index] || 0) + 1;
}
for (i = 0, bias = new Array(m); i < m; ++i) {
link = links[i], bias[i] = count[link.source.index] / (count[link.source.index] + count[link.target.index]);
}
strengths = new Array(m), initializeStrength();
distances = new Array(m), initializeDistance();
}
function initializeStrength() {
if (!nodes) return;
for (var i = 0, n = links.length; i < n; ++i) {
strengths[i] = +strength(links[i], i, links);
}
}
function initializeDistance() {
if (!nodes) return;
for (var i = 0, n = links.length; i < n; ++i) {
distances[i] = +distance(links[i], i, links);
}
}
force.initialize = function(_nodes, _random) {
nodes = _nodes;
random = _random;
initialize();
};
force.links = function(_) {
return arguments.length ? (links = _, initialize(), force) : links;
};
force.id = function(_) {
return arguments.length ? (id = _, force) : id;
};
force.iterations = function(_) {
return arguments.length ? (iterations = +_, force) : iterations;
};
force.strength = function(_) {
return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initializeStrength(), force) : strength;
};
force.distance = function(_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant$4(+_), initializeDistance(), force) : distance;
};
return force;
}
// https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
const a$2 = 1664525;
const c$4 = 1013904223;
const m$1 = 4294967296; // 2^32
function lcg$2() {
let s = 1;
return () => (s = (a$2 * s + c$4) % m$1) / m$1;
}
function x$2(d) {
return d.x;
}
function y$2(d) {
return d.y;
}
var initialRadius = 10,
initialAngle = Math.PI * (3 - Math.sqrt(5));
function simulation(nodes) {
var simulation,
alpha = 1,
alphaMin = 0.001,
alphaDecay = 1 - Math.pow(alphaMin, 1 / 300),
alphaTarget = 0,
velocityDecay = 0.6,
forces = new Map(),
stepper = timer(step),
event = dispatch("tick", "end"),
random = lcg$2();
if (nodes == null) nodes = [];
function step() {
tick();
event.call("tick", simulation);
if (alpha < alphaMin) {
stepper.stop();
event.call("end", simulation);
}
}
function tick(iterations) {
var i, n = nodes.length, node;
if (iterations === undefined) iterations = 1;
for (var k = 0; k < iterations; ++k) {
alpha += (alphaTarget - alpha) * alphaDecay;
forces.forEach(function(force) {
force(alpha);
});
for (i = 0; i < n; ++i) {
node = nodes[i];
if (node.fx == null) node.x += node.vx *= velocityDecay;
else node.x = node.fx, node.vx = 0;
if (node.fy == null) node.y += node.vy *= velocityDecay;
else node.y = node.fy, node.vy = 0;
}
}
return simulation;
}
function initializeNodes() {
for (var i = 0, n = nodes.length, node; i < n; ++i) {
node = nodes[i], node.index = i;
if (node.fx != null) node.x = node.fx;
if (node.fy != null) node.y = node.fy;
if (isNaN(node.x) || isNaN(node.y)) {
var radius = initialRadius * Math.sqrt(0.5 + i), angle = i * initialAngle;
node.x = radius * Math.cos(angle);
node.y = radius * Math.sin(angle);
}
if (isNaN(node.vx) || isNaN(node.vy)) {
node.vx = node.vy = 0;
}
}
}
function initializeForce(force) {
if (force.initialize) force.initialize(nodes, random);
return force;
}
initializeNodes();
return simulation = {
tick: tick,
restart: function() {
return stepper.restart(step), simulation;
},
stop: function() {
return stepper.stop(), simulation;
},
nodes: function(_) {
return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes;
},
alpha: function(_) {
return arguments.length ? (alpha = +_, simulation) : alpha;
},
alphaMin: function(_) {
return arguments.length ? (alphaMin = +_, simulation) : alphaMin;
},
alphaDecay: function(_) {
return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay;
},
alphaTarget: function(_) {
return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget;
},
velocityDecay: function(_) {
return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay;
},
randomSource: function(_) {
return arguments.length ? (random = _, forces.forEach(initializeForce), simulation) : random;
},
force: function(name, _) {
return arguments.length > 1 ? ((_ == null ? forces.delete(name) : forces.set(name, initializeForce(_))), simulation) : forces.get(name);
},
find: function(x, y, radius) {
var i = 0,
n = nodes.length,
dx,
dy,
d2,
node,
closest;
if (radius == null) radius = Infinity;
else radius *= radius;
for (i = 0; i < n; ++i) {
node = nodes[i];
dx = x - node.x;
dy = y - node.y;
d2 = dx * dx + dy * dy;
if (d2 < radius) closest = node, radius = d2;
}
return closest;
},
on: function(name, _) {
return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name);
}
};
}
function manyBody() {
var nodes,
node,
random,
alpha,
strength = constant$4(-30),
strengths,
distanceMin2 = 1,
distanceMax2 = Infinity,
theta2 = 0.81;
function force(_) {
var i, n = nodes.length, tree = quadtree(nodes, x$2, y$2).visitAfter(accumulate);
for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply);
}
function initialize() {
if (!nodes) return;
var i, n = nodes.length, node;
strengths = new Array(n);
for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes);
}
function accumulate(quad) {
var strength = 0, q, c, weight = 0, x, y, i;
// For internal nodes, accumulate forces from child quadrants.
if (quad.length) {
for (x = y = i = 0; i < 4; ++i) {
if ((q = quad[i]) && (c = Math.abs(q.value))) {
strength += q.value, weight += c, x += c * q.x, y += c * q.y;
}
}
quad.x = x / weight;
quad.y = y / weight;
}
// For leaf nodes, accumulate forces from coincident quadrants.
else {
q = quad;
q.x = q.data.x;
q.y = q.data.y;
do strength += strengths[q.data.index];
while (q = q.next);
}
quad.value = strength;
}
function apply(quad, x1, _, x2) {
if (!quad.value) return true;
var x = quad.x - node.x,
y = quad.y - node.y,
w = x2 - x1,
l = x * x + y * y;
// Apply the Barnes-Hut approximation if possible.
// Limit forces for very close nodes; randomize direction if coincident.
if (w * w / theta2 < l) {
if (l < distanceMax2) {
if (x === 0) x = jiggle(random), l += x * x;
if (y === 0) y = jiggle(random), l += y * y;
if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l);
node.vx += x * quad.value * alpha / l;
node.vy += y * quad.value * alpha / l;
}
return true;
}
// Otherwise, process points directly.
else if (quad.length || l >= distanceMax2) return;
// Limit forces for very close nodes; randomize direction if coincident.
if (quad.data !== node || quad.next) {
if (x === 0) x = jiggle(random), l += x * x;
if (y === 0) y = jiggle(random), l += y * y;
if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l);
}
do if (quad.data !== node) {
w = strengths[quad.data.index] * alpha / l;
node.vx += x * w;
node.vy += y * w;
} while (quad = quad.next);
}
force.initialize = function(_nodes, _random) {
nodes = _nodes;
random = _random;
initialize();
};
force.strength = function(_) {
return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength;
};
force.distanceMin = function(_) {
return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2);
};
force.distanceMax = function(_) {
return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2);
};
force.theta = function(_) {
return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2);
};
return force;
}
function radial$1(radius, x, y) {
var nodes,
strength = constant$4(0.1),
strengths,
radiuses;
if (typeof radius !== "function") radius = constant$4(+radius);
if (x == null) x = 0;
if (y == null) y = 0;
function force(alpha) {
for (var i = 0, n = nodes.length; i < n; ++i) {
var node = nodes[i],
dx = node.x - x || 1e-6,
dy = node.y - y || 1e-6,
r = Math.sqrt(dx * dx + dy * dy),
k = (radiuses[i] - r) * strengths[i] * alpha / r;
node.vx += dx * k;
node.vy += dy * k;
}
}
function initialize() {
if (!nodes) return;
var i, n = nodes.length;
strengths = new Array(n);
radiuses = new Array(n);
for (i = 0; i < n; ++i) {
radiuses[i] = +radius(nodes[i], i, nodes);
strengths[i] = isNaN(radiuses[i]) ? 0 : +strength(nodes[i], i, nodes);
}
}
force.initialize = function(_) {
nodes = _, initialize();
};
force.strength = function(_) {
return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength;
};
force.radius = function(_) {
return arguments.length ? (radius = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : radius;
};
force.x = function(_) {
return arguments.length ? (x = +_, force) : x;
};
force.y = function(_) {
return arguments.length ? (y = +_, force) : y;
};
return force;
}
function x$1(x) {
var strength = constant$4(0.1),
nodes,
strengths,
xz;
if (typeof x !== "function") x = constant$4(x == null ? 0 : +x);
function force(alpha) {
for (var i = 0, n = nodes.length, node; i < n; ++i) {
node = nodes[i], node.vx += (xz[i] - node.x) * strengths[i] * alpha;
}
}
function initialize() {
if (!nodes) return;
var i, n = nodes.length;
strengths = new Array(n);
xz = new Array(n);
for (i = 0; i < n; ++i) {
strengths[i] = isNaN(xz[i] = +x(nodes[i], i, nodes)) ? 0 : +strength(nodes[i], i, nodes);
}
}
force.initialize = function(_) {
nodes = _;
initialize();
};
force.strength = function(_) {
return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength;
};
force.x = function(_) {
return arguments.length ? (x = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : x;
};
return force;
}
function y$1(y) {
var strength = constant$4(0.1),
nodes,
strengths,
yz;
if (typeof y !== "function") y = constant$4(y == null ? 0 : +y);
function force(alpha) {
for (var i = 0, n = nodes.length, node; i < n; ++i) {
node = nodes[i], node.vy += (yz[i] - node.y) * strengths[i] * alpha;
}
}
function initialize() {
if (!nodes) return;
var i, n = nodes.length;
strengths = new Array(n);
yz = new Array(n);
for (i = 0; i < n; ++i) {
strengths[i] = isNaN(yz[i] = +y(nodes[i], i, nodes)) ? 0 : +strength(nodes[i], i, nodes);
}
}
force.initialize = function(_) {
nodes = _;
initialize();
};
force.strength = function(_) {
return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength;
};
force.y = function(_) {
return arguments.length ? (y = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : y;
};
return force;
}
function formatDecimal(x) {
return Math.abs(x = Math.round(x)) >= 1e21
? x.toLocaleString("en").replace(/,/g, "")
: x.toString(10);
}
// Computes the decimal coefficient and exponent of the specified number x with
// significant digits p, where x is positive and p is in [1, 21] or undefined.
// For example, formatDecimalParts(1.23) returns ["123", 0].
function formatDecimalParts(x, p) {
if ((i = (x = p ? x.toExponential(p - 1) : x.toExponential()).indexOf("e")) < 0) return null; // NaN, ±Infinity
var i, coefficient = x.slice(0, i);
// The string returned by toExponential either has the form \d\.\d+e[-+]\d+
// (e.g., 1.2e+3) or the form \de[-+]\d+ (e.g., 1e+3).
return [
coefficient.length > 1 ? coefficient[0] + coefficient.slice(2) : coefficient,
+x.slice(i + 1)
];
}
function exponent(x) {
return x = formatDecimalParts(Math.abs(x)), x ? x[1] : NaN;
}
function formatGroup(grouping, thousands) {
return function(value, width) {
var i = value.length,
t = [],
j = 0,
g = grouping[0],
length = 0;
while (i > 0 && g > 0) {
if (length + g + 1 > width) g = Math.max(1, width - length);
t.push(value.substring(i -= g, i + g));
if ((length += g + 1) > width) break;
g = grouping[j = (j + 1) % grouping.length];
}
return t.reverse().join(thousands);
};
}
function formatNumerals(numerals) {
return function(value) {
return value.replace(/[0-9]/g, function(i) {
return numerals[+i];
});
};
}
// [[fill]align][sign][symbol][0][width][,][.precision][~][type]
var re = /^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i;
function formatSpecifier(specifier) {
if (!(match = re.exec(specifier))) throw new Error("invalid format: " + specifier);
var match;
return new FormatSpecifier({
fill: match[1],
align: match[2],
sign: match[3],
symbol: match[4],
zero: match[5],
width: match[6],
comma: match[7],
precision: match[8] && match[8].slice(1),
trim: match[9],
type: match[10]
});
}
formatSpecifier.prototype = FormatSpecifier.prototype; // instanceof
function FormatSpecifier(specifier) {
this.fill = specifier.fill === undefined ? " " : specifier.fill + "";
this.align = specifier.align === undefined ? ">" : specifier.align + "";
this.sign = specifier.sign === undefined ? "-" : specifier.sign + "";
this.symbol = specifier.symbol === undefined ? "" : specifier.symbol + "";
this.zero = !!specifier.zero;
this.width = specifier.width === undefined ? undefined : +specifier.width;
this.comma = !!specifier.comma;
this.precision = specifier.precision === undefined ? undefined : +specifier.precision;
this.trim = !!specifier.trim;
this.type = specifier.type === undefined ? "" : specifier.type + "";
}
FormatSpecifier.prototype.toString = function() {
return this.fill
+ this.align
+ this.sign
+ this.symbol
+ (this.zero ? "0" : "")
+ (this.width === undefined ? "" : Math.max(1, this.width | 0))
+ (this.comma ? "," : "")
+ (this.precision === undefined ? "" : "." + Math.max(0, this.precision | 0))
+ (this.trim ? "~" : "")
+ this.type;
};
// Trims insignificant zeros, e.g., replaces 1.2000k with 1.2k.
function formatTrim(s) {
out: for (var n = s.length, i = 1, i0 = -1, i1; i < n; ++i) {
switch (s[i]) {
case ".": i0 = i1 = i; break;
case "0": if (i0 === 0) i0 = i; i1 = i; break;
default: if (!+s[i]) break out; if (i0 > 0) i0 = 0; break;
}
}
return i0 > 0 ? s.slice(0, i0) + s.slice(i1 + 1) : s;
}
var prefixExponent;
function formatPrefixAuto(x, p) {
var d = formatDecimalParts(x, p);
if (!d) return x + "";
var coefficient = d[0],
exponent = d[1],
i = exponent - (prefixExponent = Math.max(-8, Math.min(8, Math.floor(exponent / 3))) * 3) + 1,
n = coefficient.length;
return i === n ? coefficient
: i > n ? coefficient + new Array(i - n + 1).join("0")
: i > 0 ? coefficient.slice(0, i) + "." + coefficient.slice(i)
: "0." + new Array(1 - i).join("0") + formatDecimalParts(x, Math.max(0, p + i - 1))[0]; // less than 1y!
}
function formatRounded(x, p) {
var d = formatDecimalParts(x, p);
if (!d) return x + "";
var coefficient = d[0],
exponent = d[1];
return exponent < 0 ? "0." + new Array(-exponent).join("0") + coefficient
: coefficient.length > exponent + 1 ? coefficient.slice(0, exponent + 1) + "." + coefficient.slice(exponent + 1)
: coefficient + new Array(exponent - coefficient.length + 2).join("0");
}
var formatTypes = {
"%": (x, p) => (x * 100).toFixed(p),
"b": (x) => Math.round(x).toString(2),
"c": (x) => x + "",
"d": formatDecimal,
"e": (x, p) => x.toExponential(p),
"f": (x, p) => x.toFixed(p),
"g": (x, p) => x.toPrecision(p),
"o": (x) => Math.round(x).toString(8),
"p": (x, p) => formatRounded(x * 100, p),
"r": formatRounded,
"s": formatPrefixAuto,
"X": (x) => Math.round(x).toString(16).toUpperCase(),
"x": (x) => Math.round(x).toString(16)
};
function identity$6(x) {
return x;
}
var map = Array.prototype.map,
prefixes = ["y","z","a","f","p","n","µ","m","","k","M","G","T","P","E","Z","Y"];
function formatLocale$1(locale) {
var group = locale.grouping === undefined || locale.thousands === undefined ? identity$6 : formatGroup(map.call(locale.grouping, Number), locale.thousands + ""),
currencyPrefix = locale.currency === undefined ? "" : locale.currency[0] + "",
currencySuffix = locale.currency === undefined ? "" : locale.currency[1] + "",
decimal = locale.decimal === undefined ? "." : locale.decimal + "",
numerals = locale.numerals === undefined ? identity$6 : formatNumerals(map.call(locale.numerals, String)),
percent = locale.percent === undefined ? "%" : locale.percent + "",
minus = locale.minus === undefined ? "" : locale.minus + "",
nan = locale.nan === undefined ? "NaN" : locale.nan + "";
function newFormat(specifier) {
specifier = formatSpecifier(specifier);
var fill = specifier.fill,
align = specifier.align,
sign = specifier.sign,
symbol = specifier.symbol,
zero = specifier.zero,
width = specifier.width,
comma = specifier.comma,
precision = specifier.precision,
trim = specifier.trim,
type = specifier.type;
// The "n" type is an alias for ",g".
if (type === "n") comma = true, type = "g";
// The "" type, and any invalid type, is an alias for ".12~g".
else if (!formatTypes[type]) precision === undefined && (precision = 12), trim = true, type = "g";
// If zero fill is specified, padding goes after sign and before digits.
if (zero || (fill === "0" && align === "=")) zero = true, fill = "0", align = "=";
// Compute the prefix and suffix.
// For SI-prefix, the suffix is lazily computed.
var prefix = symbol === "$" ? currencyPrefix : symbol === "#" && /[boxX]/.test(type) ? "0" + type.toLowerCase() : "",
suffix = symbol === "$" ? currencySuffix : /[%p]/.test(type) ? percent : "";
// What format function should we use?
// Is this an integer type?
// Can this type generate exponential notation?
var formatType = formatTypes[type],
maybeSuffix = /[defgprs%]/.test(type);
// Set the default precision if not specified,
// or clamp the specified precision to the supported range.
// For significant precision, it must be in [1, 21].
// For fixed precision, it must be in [0, 20].
precision = precision === undefined ? 6
: /[gprs]/.test(type) ? Math.max(1, Math.min(21, precision))
: Math.max(0, Math.min(20, precision));
function format(value) {
var valuePrefix = prefix,
valueSuffix = suffix,
i, n, c;
if (type === "c") {
valueSuffix = formatType(value) + valueSuffix;
value = "";
} else {
value = +value;
// Determine the sign. -0 is not less than 0, but 1 / -0 is!
var valueNegative = value < 0 || 1 / value < 0;
// Perform the initial formatting.
value = isNaN(value) ? nan : formatType(Math.abs(value), precision);
// Trim insignificant zeros.
if (trim) value = formatTrim(value);
// If a negative value rounds to zero after formatting, and no explicit positive sign is requested, hide the sign.
if (valueNegative && +value === 0 && sign !== "+") valueNegative = false;
// Compute the prefix and suffix.
valuePrefix = (valueNegative ? (sign === "(" ? sign : minus) : sign === "-" || sign === "(" ? "" : sign) + valuePrefix;
valueSuffix = (type === "s" ? prefixes[8 + prefixExponent / 3] : "") + valueSuffix + (valueNegative && sign === "(" ? ")" : "");
// Break the formatted value into the integer “value” part that can be
// grouped, and fractional or exponential “suffix” part that is not.
if (maybeSuffix) {
i = -1, n = value.length;
while (++i < n) {
if (c = value.charCodeAt(i), 48 > c || c > 57) {
valueSuffix = (c === 46 ? decimal + value.slice(i + 1) : value.slice(i)) + valueSuffix;
value = value.slice(0, i);
break;
}
}
}
}
// If the fill character is not "0", grouping is applied before padding.
if (comma && !zero) value = group(value, Infinity);
// Compute the padding.
var length = valuePrefix.length + value.length + valueSuffix.length,
padding = length < width ? new Array(width - length + 1).join(fill) : "";
// If the fill character is "0", grouping is applied after padding.
if (comma && zero) value = group(padding + value, padding.length ? width - valueSuffix.length : Infinity), padding = "";
// Reconstruct the final output based on the desired alignment.
switch (align) {
case "<": value = valuePrefix + value + valueSuffix + padding; break;
case "=": value = valuePrefix + padding + value + valueSuffix; break;
case "^": value = padding.slice(0, length = padding.length >> 1) + valuePrefix + value + valueSuffix + padding.slice(length); break;
default: value = padding + valuePrefix + value + valueSuffix; break;
}
return numerals(value);
}
format.toString = function() {
return specifier + "";
};
return format;
}
function formatPrefix(specifier, value) {
var f = newFormat((specifier = formatSpecifier(specifier), specifier.type = "f", specifier)),
e = Math.max(-8, Math.min(8, Math.floor(exponent(value) / 3))) * 3,
k = Math.pow(10, -e),
prefix = prefixes[8 + e / 3];
return function(value) {
return f(k * value) + prefix;
};
}
return {
format: newFormat,
formatPrefix: formatPrefix
};
}
var locale$1;
exports.format = void 0;
exports.formatPrefix = void 0;
defaultLocale$1({
thousands: ",",
grouping: [3],
currency: ["$", ""]
});
function defaultLocale$1(definition) {
locale$1 = formatLocale$1(definition);
exports.format = locale$1.format;
exports.formatPrefix = locale$1.formatPrefix;
return locale$1;
}
function precisionFixed(step) {
return Math.max(0, -exponent(Math.abs(step)));
}
function precisionPrefix(step, value) {
return Math.max(0, Math.max(-8, Math.min(8, Math.floor(exponent(value) / 3))) * 3 - exponent(Math.abs(step)));
}
function precisionRound(step, max) {
step = Math.abs(step), max = Math.abs(max) - step;
return Math.max(0, exponent(max) - exponent(step)) + 1;
}
var epsilon$1 = 1e-6;
var epsilon2 = 1e-12;
var pi$1 = Math.PI;
var halfPi$1 = pi$1 / 2;
var quarterPi = pi$1 / 4;
var tau$1 = pi$1 * 2;
var degrees = 180 / pi$1;
var radians = pi$1 / 180;
var abs$1 = Math.abs;
var atan = Math.atan;
var atan2$1 = Math.atan2;
var cos$1 = Math.cos;
var ceil = Math.ceil;
var exp = Math.exp;
var hypot = Math.hypot;
var log$1 = Math.log;
var pow$1 = Math.pow;
var sin$1 = Math.sin;
var sign$1 = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
var sqrt$2 = Math.sqrt;
var tan = Math.tan;
function acos$1(x) {
return x > 1 ? 0 : x < -1 ? pi$1 : Math.acos(x);
}
function asin$1(x) {
return x > 1 ? halfPi$1 : x < -1 ? -halfPi$1 : Math.asin(x);
}
function haversin(x) {
return (x = sin$1(x / 2)) * x;
}
function noop$1() {}
function streamGeometry(geometry, stream) {
if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {
streamGeometryType[geometry.type](geometry, stream);
}
}
var streamObjectType = {
Feature: function(object, stream) {
streamGeometry(object.geometry, stream);
},
FeatureCollection: function(object, stream) {
var features = object.features, i = -1, n = features.length;
while (++i < n) streamGeometry(features[i].geometry, stream);
}
};
var streamGeometryType = {
Sphere: function(object, stream) {
stream.sphere();
},
Point: function(object, stream) {
object = object.coordinates;
stream.point(object[0], object[1], object[2]);
},
MultiPoint: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);
},
LineString: function(object, stream) {
streamLine(object.coordinates, stream, 0);
},
MultiLineString: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamLine(coordinates[i], stream, 0);
},
Polygon: function(object, stream) {
streamPolygon(object.coordinates, stream);
},
MultiPolygon: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamPolygon(coordinates[i], stream);
},
GeometryCollection: function(object, stream) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) streamGeometry(geometries[i], stream);
}
};
function streamLine(coordinates, stream, closed) {
var i = -1, n = coordinates.length - closed, coordinate;
stream.lineStart();
while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);
stream.lineEnd();
}
function streamPolygon(coordinates, stream) {
var i = -1, n = coordinates.length;
stream.polygonStart();
while (++i < n) streamLine(coordinates[i], stream, 1);
stream.polygonEnd();
}
function geoStream(object, stream) {
if (object && streamObjectType.hasOwnProperty(object.type)) {
streamObjectType[object.type](object, stream);
} else {
streamGeometry(object, stream);
}
}
var areaRingSum$1 = new Adder();
// hello?
var areaSum$1 = new Adder(),
lambda00$2,
phi00$2,
lambda0$2,
cosPhi0$1,
sinPhi0$1;
var areaStream$1 = {
point: noop$1,
lineStart: noop$1,
lineEnd: noop$1,
polygonStart: function() {
areaRingSum$1 = new Adder();
areaStream$1.lineStart = areaRingStart$1;
areaStream$1.lineEnd = areaRingEnd$1;
},
polygonEnd: function() {
var areaRing = +areaRingSum$1;
areaSum$1.add(areaRing < 0 ? tau$1 + areaRing : areaRing);
this.lineStart = this.lineEnd = this.point = noop$1;
},
sphere: function() {
areaSum$1.add(tau$1);
}
};
function areaRingStart$1() {
areaStream$1.point = areaPointFirst$1;
}
function areaRingEnd$1() {
areaPoint$1(lambda00$2, phi00$2);
}
function areaPointFirst$1(lambda, phi) {
areaStream$1.point = areaPoint$1;
lambda00$2 = lambda, phi00$2 = phi;
lambda *= radians, phi *= radians;
lambda0$2 = lambda, cosPhi0$1 = cos$1(phi = phi / 2 + quarterPi), sinPhi0$1 = sin$1(phi);
}
function areaPoint$1(lambda, phi) {
lambda *= radians, phi *= radians;
phi = phi / 2 + quarterPi; // half the angular distance from south pole
// Spherical excess E for a spherical triangle with vertices: south pole,
// previous point, current point. Uses a formula derived from Cagnolis
// theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
var dLambda = lambda - lambda0$2,
sdLambda = dLambda >= 0 ? 1 : -1,
adLambda = sdLambda * dLambda,
cosPhi = cos$1(phi),
sinPhi = sin$1(phi),
k = sinPhi0$1 * sinPhi,
u = cosPhi0$1 * cosPhi + k * cos$1(adLambda),
v = k * sdLambda * sin$1(adLambda);
areaRingSum$1.add(atan2$1(v, u));
// Advance the previous points.
lambda0$2 = lambda, cosPhi0$1 = cosPhi, sinPhi0$1 = sinPhi;
}
function area$2(object) {
areaSum$1 = new Adder();
geoStream(object, areaStream$1);
return areaSum$1 * 2;
}
function spherical(cartesian) {
return [atan2$1(cartesian[1], cartesian[0]), asin$1(cartesian[2])];
}
function cartesian(spherical) {
var lambda = spherical[0], phi = spherical[1], cosPhi = cos$1(phi);
return [cosPhi * cos$1(lambda), cosPhi * sin$1(lambda), sin$1(phi)];
}
function cartesianDot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
function cartesianCross(a, b) {
return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];
}
// TODO return a
function cartesianAddInPlace(a, b) {
a[0] += b[0], a[1] += b[1], a[2] += b[2];
}
function cartesianScale(vector, k) {
return [vector[0] * k, vector[1] * k, vector[2] * k];
}
// TODO return d
function cartesianNormalizeInPlace(d) {
var l = sqrt$2(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
d[0] /= l, d[1] /= l, d[2] /= l;
}
var lambda0$1, phi0, lambda1, phi1, // bounds
lambda2, // previous lambda-coordinate
lambda00$1, phi00$1, // first point
p0, // previous 3D point
deltaSum,
ranges,
range;
var boundsStream$2 = {
point: boundsPoint$1,
lineStart: boundsLineStart,
lineEnd: boundsLineEnd,
polygonStart: function() {
boundsStream$2.point = boundsRingPoint;
boundsStream$2.lineStart = boundsRingStart;
boundsStream$2.lineEnd = boundsRingEnd;
deltaSum = new Adder();
areaStream$1.polygonStart();
},
polygonEnd: function() {
areaStream$1.polygonEnd();
boundsStream$2.point = boundsPoint$1;
boundsStream$2.lineStart = boundsLineStart;
boundsStream$2.lineEnd = boundsLineEnd;
if (areaRingSum$1 < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
else if (deltaSum > epsilon$1) phi1 = 90;
else if (deltaSum < -epsilon$1) phi0 = -90;
range[0] = lambda0$1, range[1] = lambda1;
},
sphere: function() {
lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
}
};
function boundsPoint$1(lambda, phi) {
ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]);
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
function linePoint(lambda, phi) {
var p = cartesian([lambda * radians, phi * radians]);
if (p0) {
var normal = cartesianCross(p0, p),
equatorial = [normal[1], -normal[0], 0],
inflection = cartesianCross(equatorial, normal);
cartesianNormalizeInPlace(inflection);
inflection = spherical(inflection);
var delta = lambda - lambda2,
sign = delta > 0 ? 1 : -1,
lambdai = inflection[0] * degrees * sign,
phii,
antimeridian = abs$1(delta) > 180;
if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
phii = inflection[1] * degrees;
if (phii > phi1) phi1 = phii;
} else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
phii = -inflection[1] * degrees;
if (phii < phi0) phi0 = phii;
} else {
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
if (antimeridian) {
if (lambda < lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
} else {
if (lambda1 >= lambda0$1) {
if (lambda < lambda0$1) lambda0$1 = lambda;
if (lambda > lambda1) lambda1 = lambda;
} else {
if (lambda > lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
}
}
} else {
ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]);
}
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
p0 = p, lambda2 = lambda;
}
function boundsLineStart() {
boundsStream$2.point = linePoint;
}
function boundsLineEnd() {
range[0] = lambda0$1, range[1] = lambda1;
boundsStream$2.point = boundsPoint$1;
p0 = null;
}
function boundsRingPoint(lambda, phi) {
if (p0) {
var delta = lambda - lambda2;
deltaSum.add(abs$1(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);
} else {
lambda00$1 = lambda, phi00$1 = phi;
}
areaStream$1.point(lambda, phi);
linePoint(lambda, phi);
}
function boundsRingStart() {
areaStream$1.lineStart();
}
function boundsRingEnd() {
boundsRingPoint(lambda00$1, phi00$1);
areaStream$1.lineEnd();
if (abs$1(deltaSum) > epsilon$1) lambda0$1 = -(lambda1 = 180);
range[0] = lambda0$1, range[1] = lambda1;
p0 = null;
}
// Finds the left-right distance between two longitudes.
// This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want
// the distance between ±180° to be 360°.
function angle(lambda0, lambda1) {
return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;
}
function rangeCompare(a, b) {
return a[0] - b[0];
}
function rangeContains(range, x) {
return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;
}
function bounds(feature) {
var i, n, a, b, merged, deltaMax, delta;
phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity);
ranges = [];
geoStream(feature, boundsStream$2);
// First, sort ranges by their minimum longitudes.
if (n = ranges.length) {
ranges.sort(rangeCompare);
// Then, merge any ranges that overlap.
for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {
b = ranges[i];
if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {
if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];
if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];
} else {
merged.push(a = b);
}
}
// Finally, find the largest gap between the merged ranges.
// The final bounding box will be the inverse of this gap.
for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {
b = merged[i];
if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1];
}
}
ranges = range = null;
return lambda0$1 === Infinity || phi0 === Infinity
? [[NaN, NaN], [NaN, NaN]]
: [[lambda0$1, phi0], [lambda1, phi1]];
}
var W0, W1,
X0$1, Y0$1, Z0$1,
X1$1, Y1$1, Z1$1,
X2$1, Y2$1, Z2$1,
lambda00, phi00, // first point
x0$4, y0$4, z0; // previous point
var centroidStream$1 = {
sphere: noop$1,
point: centroidPoint$1,
lineStart: centroidLineStart$1,
lineEnd: centroidLineEnd$1,
polygonStart: function() {
centroidStream$1.lineStart = centroidRingStart$1;
centroidStream$1.lineEnd = centroidRingEnd$1;
},
polygonEnd: function() {
centroidStream$1.lineStart = centroidLineStart$1;
centroidStream$1.lineEnd = centroidLineEnd$1;
}
};
// Arithmetic mean of Cartesian vectors.
function centroidPoint$1(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos$1(phi);
centroidPointCartesian(cosPhi * cos$1(lambda), cosPhi * sin$1(lambda), sin$1(phi));
}
function centroidPointCartesian(x, y, z) {
++W0;
X0$1 += (x - X0$1) / W0;
Y0$1 += (y - Y0$1) / W0;
Z0$1 += (z - Z0$1) / W0;
}
function centroidLineStart$1() {
centroidStream$1.point = centroidLinePointFirst;
}
function centroidLinePointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos$1(phi);
x0$4 = cosPhi * cos$1(lambda);
y0$4 = cosPhi * sin$1(lambda);
z0 = sin$1(phi);
centroidStream$1.point = centroidLinePoint;
centroidPointCartesian(x0$4, y0$4, z0);
}
function centroidLinePoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos$1(phi),
x = cosPhi * cos$1(lambda),
y = cosPhi * sin$1(lambda),
z = sin$1(phi),
w = atan2$1(sqrt$2((w = y0$4 * z - z0 * y) * w + (w = z0 * x - x0$4 * z) * w + (w = x0$4 * y - y0$4 * x) * w), x0$4 * x + y0$4 * y + z0 * z);
W1 += w;
X1$1 += w * (x0$4 + (x0$4 = x));
Y1$1 += w * (y0$4 + (y0$4 = y));
Z1$1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0$4, y0$4, z0);
}
function centroidLineEnd$1() {
centroidStream$1.point = centroidPoint$1;
}
// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
// J. Applied Mechanics 42, 239 (1975).
function centroidRingStart$1() {
centroidStream$1.point = centroidRingPointFirst;
}
function centroidRingEnd$1() {
centroidRingPoint(lambda00, phi00);
centroidStream$1.point = centroidPoint$1;
}
function centroidRingPointFirst(lambda, phi) {
lambda00 = lambda, phi00 = phi;
lambda *= radians, phi *= radians;
centroidStream$1.point = centroidRingPoint;
var cosPhi = cos$1(phi);
x0$4 = cosPhi * cos$1(lambda);
y0$4 = cosPhi * sin$1(lambda);
z0 = sin$1(phi);
centroidPointCartesian(x0$4, y0$4, z0);
}
function centroidRingPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos$1(phi),
x = cosPhi * cos$1(lambda),
y = cosPhi * sin$1(lambda),
z = sin$1(phi),
cx = y0$4 * z - z0 * y,
cy = z0 * x - x0$4 * z,
cz = x0$4 * y - y0$4 * x,
m = hypot(cx, cy, cz),
w = asin$1(m), // line weight = angle
v = m && -w / m; // area weight multiplier
X2$1.add(v * cx);
Y2$1.add(v * cy);
Z2$1.add(v * cz);
W1 += w;
X1$1 += w * (x0$4 + (x0$4 = x));
Y1$1 += w * (y0$4 + (y0$4 = y));
Z1$1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0$4, y0$4, z0);
}
function centroid$1(object) {
W0 = W1 =
X0$1 = Y0$1 = Z0$1 =
X1$1 = Y1$1 = Z1$1 = 0;
X2$1 = new Adder();
Y2$1 = new Adder();
Z2$1 = new Adder();
geoStream(object, centroidStream$1);
var x = +X2$1,
y = +Y2$1,
z = +Z2$1,
m = hypot(x, y, z);
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
if (m < epsilon2) {
x = X1$1, y = Y1$1, z = Z1$1;
// If the feature has zero length, fall back to arithmetic mean of point vectors.
if (W1 < epsilon$1) x = X0$1, y = Y0$1, z = Z0$1;
m = hypot(x, y, z);
// If the feature still has an undefined ccentroid, then return.
if (m < epsilon2) return [NaN, NaN];
}
return [atan2$1(y, x) * degrees, asin$1(z / m) * degrees];
}
function constant$3(x) {
return function() {
return x;
};
}
function compose(a, b) {
function compose(x, y) {
return x = a(x, y), b(x[0], x[1]);
}
if (a.invert && b.invert) compose.invert = function(x, y) {
return x = b.invert(x, y), x && a.invert(x[0], x[1]);
};
return compose;
}
function rotationIdentity(lambda, phi) {
if (abs$1(lambda) > pi$1) lambda -= Math.round(lambda / tau$1) * tau$1;
return [lambda, phi];
}
rotationIdentity.invert = rotationIdentity;
function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {
return (deltaLambda %= tau$1) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))
: rotationLambda(deltaLambda))
: (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)
: rotationIdentity);
}
function forwardRotationLambda(deltaLambda) {
return function(lambda, phi) {
lambda += deltaLambda;
if (abs$1(lambda) > pi$1) lambda -= Math.round(lambda / tau$1) * tau$1;
return [lambda, phi];
};
}
function rotationLambda(deltaLambda) {
var rotation = forwardRotationLambda(deltaLambda);
rotation.invert = forwardRotationLambda(-deltaLambda);
return rotation;
}
function rotationPhiGamma(deltaPhi, deltaGamma) {
var cosDeltaPhi = cos$1(deltaPhi),
sinDeltaPhi = sin$1(deltaPhi),
cosDeltaGamma = cos$1(deltaGamma),
sinDeltaGamma = sin$1(deltaGamma);
function rotation(lambda, phi) {
var cosPhi = cos$1(phi),
x = cos$1(lambda) * cosPhi,
y = sin$1(lambda) * cosPhi,
z = sin$1(phi),
k = z * cosDeltaPhi + x * sinDeltaPhi;
return [
atan2$1(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),
asin$1(k * cosDeltaGamma + y * sinDeltaGamma)
];
}
rotation.invert = function(lambda, phi) {
var cosPhi = cos$1(phi),
x = cos$1(lambda) * cosPhi,
y = sin$1(lambda) * cosPhi,
z = sin$1(phi),
k = z * cosDeltaGamma - y * sinDeltaGamma;
return [
atan2$1(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),
asin$1(k * cosDeltaPhi - x * sinDeltaPhi)
];
};
return rotation;
}
function rotation(rotate) {
rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);
function forward(coordinates) {
coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
}
forward.invert = function(coordinates) {
coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
};
return forward;
}
// Generates a circle centered at [0°, 0°], with a given radius and precision.
function circleStream(stream, radius, delta, direction, t0, t1) {
if (!delta) return;
var cosRadius = cos$1(radius),
sinRadius = sin$1(radius),
step = direction * delta;
if (t0 == null) {
t0 = radius + direction * tau$1;
t1 = radius - step / 2;
} else {
t0 = circleRadius(cosRadius, t0);
t1 = circleRadius(cosRadius, t1);
if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau$1;
}
for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
point = spherical([cosRadius, -sinRadius * cos$1(t), -sinRadius * sin$1(t)]);
stream.point(point[0], point[1]);
}
}
// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
function circleRadius(cosRadius, point) {
point = cartesian(point), point[0] -= cosRadius;
cartesianNormalizeInPlace(point);
var radius = acos$1(-point[1]);
return ((-point[2] < 0 ? -radius : radius) + tau$1 - epsilon$1) % tau$1;
}
function circle$1() {
var center = constant$3([0, 0]),
radius = constant$3(90),
precision = constant$3(2),
ring,
rotate,
stream = {point: point};
function point(x, y) {
ring.push(x = rotate(x, y));
x[0] *= degrees, x[1] *= degrees;
}
function circle() {
var c = center.apply(this, arguments),
r = radius.apply(this, arguments) * radians,
p = precision.apply(this, arguments) * radians;
ring = [];
rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
circleStream(stream, r, p, 1);
c = {type: "Polygon", coordinates: [ring]};
ring = rotate = null;
return c;
}
circle.center = function(_) {
return arguments.length ? (center = typeof _ === "function" ? _ : constant$3([+_[0], +_[1]]), circle) : center;
};
circle.radius = function(_) {
return arguments.length ? (radius = typeof _ === "function" ? _ : constant$3(+_), circle) : radius;
};
circle.precision = function(_) {
return arguments.length ? (precision = typeof _ === "function" ? _ : constant$3(+_), circle) : precision;
};
return circle;
}
function clipBuffer() {
var lines = [],
line;
return {
point: function(x, y, m) {
line.push([x, y, m]);
},
lineStart: function() {
lines.push(line = []);
},
lineEnd: noop$1,
rejoin: function() {
if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
},
result: function() {
var result = lines;
lines = [];
line = null;
return result;
}
};
}
function pointEqual(a, b) {
return abs$1(a[0] - b[0]) < epsilon$1 && abs$1(a[1] - b[1]) < epsilon$1;
}
function Intersection(point, points, other, entry) {
this.x = point;
this.z = points;
this.o = other; // another intersection
this.e = entry; // is an entry?
this.v = false; // visited
this.n = this.p = null; // next & previous
}
// A generalized polygon clipping algorithm: given a polygon that has been cut
// into its visible line segments, and rejoins the segments by interpolating
// along the clip edge.
function clipRejoin(segments, compareIntersection, startInside, interpolate, stream) {
var subject = [],
clip = [],
i,
n;
segments.forEach(function(segment) {
if ((n = segment.length - 1) <= 0) return;
var n, p0 = segment[0], p1 = segment[n], x;
if (pointEqual(p0, p1)) {
if (!p0[2] && !p1[2]) {
stream.lineStart();
for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);
stream.lineEnd();
return;
}
// handle degenerate cases by moving the point
p1[0] += 2 * epsilon$1;
}
subject.push(x = new Intersection(p0, segment, null, true));
clip.push(x.o = new Intersection(p0, null, x, false));
subject.push(x = new Intersection(p1, segment, null, false));
clip.push(x.o = new Intersection(p1, null, x, true));
});
if (!subject.length) return;
clip.sort(compareIntersection);
link$1(subject);
link$1(clip);
for (i = 0, n = clip.length; i < n; ++i) {
clip[i].e = startInside = !startInside;
}
var start = subject[0],
points,
point;
while (1) {
// Find first unvisited intersection.
var current = start,
isSubject = true;
while (current.v) if ((current = current.n) === start) return;
points = current.z;
stream.lineStart();
do {
current.v = current.o.v = true;
if (current.e) {
if (isSubject) {
for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.n.x, 1, stream);
}
current = current.n;
} else {
if (isSubject) {
points = current.p.z;
for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.p.x, -1, stream);
}
current = current.p;
}
current = current.o;
points = current.z;
isSubject = !isSubject;
} while (!current.v);
stream.lineEnd();
}
}
function link$1(array) {
if (!(n = array.length)) return;
var n,
i = 0,
a = array[0],
b;
while (++i < n) {
a.n = b = array[i];
b.p = a;
a = b;
}
a.n = b = array[0];
b.p = a;
}
function longitude(point) {
return abs$1(point[0]) <= pi$1 ? point[0] : sign$1(point[0]) * ((abs$1(point[0]) + pi$1) % tau$1 - pi$1);
}
function polygonContains(polygon, point) {
var lambda = longitude(point),
phi = point[1],
sinPhi = sin$1(phi),
normal = [sin$1(lambda), -cos$1(lambda), 0],
angle = 0,
winding = 0;
var sum = new Adder();
if (sinPhi === 1) phi = halfPi$1 + epsilon$1;
else if (sinPhi === -1) phi = -halfPi$1 - epsilon$1;
for (var i = 0, n = polygon.length; i < n; ++i) {
if (!(m = (ring = polygon[i]).length)) continue;
var ring,
m,
point0 = ring[m - 1],
lambda0 = longitude(point0),
phi0 = point0[1] / 2 + quarterPi,
sinPhi0 = sin$1(phi0),
cosPhi0 = cos$1(phi0);
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
var point1 = ring[j],
lambda1 = longitude(point1),
phi1 = point1[1] / 2 + quarterPi,
sinPhi1 = sin$1(phi1),
cosPhi1 = cos$1(phi1),
delta = lambda1 - lambda0,
sign = delta >= 0 ? 1 : -1,
absDelta = sign * delta,
antimeridian = absDelta > pi$1,
k = sinPhi0 * sinPhi1;
sum.add(atan2$1(k * sign * sin$1(absDelta), cosPhi0 * cosPhi1 + k * cos$1(absDelta)));
angle += antimeridian ? delta + sign * tau$1 : delta;
// Are the longitudes either side of the points meridian (lambda),
// and are the latitudes smaller than the parallel (phi)?
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
var arc = cartesianCross(cartesian(point0), cartesian(point1));
cartesianNormalizeInPlace(arc);
var intersection = cartesianCross(normal, arc);
cartesianNormalizeInPlace(intersection);
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin$1(intersection[2]);
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
winding += antimeridian ^ delta >= 0 ? 1 : -1;
}
}
}
}
// First, determine whether the South pole is inside or outside:
//
// It is inside if:
// * the polygon winds around it in a clockwise direction.
// * the polygon does not (cumulatively) wind around it, but has a negative
// (counter-clockwise) area.
//
// Second, count the (signed) number of times a segment crosses a lambda
// from the point to the South pole. If it is zero, then the point is the
// same side as the South pole.
return (angle < -epsilon$1 || angle < epsilon$1 && sum < -epsilon2) ^ (winding & 1);
}
function clip(pointVisible, clipLine, interpolate, start) {
return function(sink) {
var line = clipLine(sink),
ringBuffer = clipBuffer(),
ringSink = clipLine(ringBuffer),
polygonStarted = false,
polygon,
segments,
ring;
var clip = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() {
clip.point = pointRing;
clip.lineStart = ringStart;
clip.lineEnd = ringEnd;
segments = [];
polygon = [];
},
polygonEnd: function() {
clip.point = point;
clip.lineStart = lineStart;
clip.lineEnd = lineEnd;
segments = merge(segments);
var startInside = polygonContains(polygon, start);
if (segments.length) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
clipRejoin(segments, compareIntersection, startInside, interpolate, sink);
} else if (startInside) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
}
if (polygonStarted) sink.polygonEnd(), polygonStarted = false;
segments = polygon = null;
},
sphere: function() {
sink.polygonStart();
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
sink.polygonEnd();
}
};
function point(lambda, phi) {
if (pointVisible(lambda, phi)) sink.point(lambda, phi);
}
function pointLine(lambda, phi) {
line.point(lambda, phi);
}
function lineStart() {
clip.point = pointLine;
line.lineStart();
}
function lineEnd() {
clip.point = point;
line.lineEnd();
}
function pointRing(lambda, phi) {
ring.push([lambda, phi]);
ringSink.point(lambda, phi);
}
function ringStart() {
ringSink.lineStart();
ring = [];
}
function ringEnd() {
pointRing(ring[0][0], ring[0][1]);
ringSink.lineEnd();
var clean = ringSink.clean(),
ringSegments = ringBuffer.result(),
i, n = ringSegments.length, m,
segment,
point;
ring.pop();
polygon.push(ring);
ring = null;
if (!n) return;
// No intersections.
if (clean & 1) {
segment = ringSegments[0];
if ((m = segment.length - 1) > 0) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]);
sink.lineEnd();
}
return;
}
// Rejoin connected segments.
// TODO reuse ringBuffer.rejoin()?
if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));
segments.push(ringSegments.filter(validSegment));
}
return clip;
};
}
function validSegment(segment) {
return segment.length > 1;
}
// Intersections are sorted along the clip edge. For both antimeridian cutting
// and circle clipping, the same comparison is used.
function compareIntersection(a, b) {
return ((a = a.x)[0] < 0 ? a[1] - halfPi$1 - epsilon$1 : halfPi$1 - a[1])
- ((b = b.x)[0] < 0 ? b[1] - halfPi$1 - epsilon$1 : halfPi$1 - b[1]);
}
var clipAntimeridian = clip(
function() { return true; },
clipAntimeridianLine,
clipAntimeridianInterpolate,
[-pi$1, -halfPi$1]
);
// Takes a line and cuts into visible segments. Return values: 0 - there were
// intersections or the line was empty; 1 - no intersections; 2 - there were
// intersections, and the first and last segments should be rejoined.
function clipAntimeridianLine(stream) {
var lambda0 = NaN,
phi0 = NaN,
sign0 = NaN,
clean; // no intersections
return {
lineStart: function() {
stream.lineStart();
clean = 1;
},
point: function(lambda1, phi1) {
var sign1 = lambda1 > 0 ? pi$1 : -pi$1,
delta = abs$1(lambda1 - lambda0);
if (abs$1(delta - pi$1) < epsilon$1) { // line crosses a pole
stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi$1 : -halfPi$1);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
stream.point(lambda1, phi0);
clean = 0;
} else if (sign0 !== sign1 && delta >= pi$1) { // line crosses antimeridian
if (abs$1(lambda0 - sign0) < epsilon$1) lambda0 -= sign0 * epsilon$1; // handle degeneracies
if (abs$1(lambda1 - sign1) < epsilon$1) lambda1 -= sign1 * epsilon$1;
phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
clean = 0;
}
stream.point(lambda0 = lambda1, phi0 = phi1);
sign0 = sign1;
},
lineEnd: function() {
stream.lineEnd();
lambda0 = phi0 = NaN;
},
clean: function() {
return 2 - clean; // if intersections, rejoin first and last segments
}
};
}
function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) {
var cosPhi0,
cosPhi1,
sinLambda0Lambda1 = sin$1(lambda0 - lambda1);
return abs$1(sinLambda0Lambda1) > epsilon$1
? atan((sin$1(phi0) * (cosPhi1 = cos$1(phi1)) * sin$1(lambda1)
- sin$1(phi1) * (cosPhi0 = cos$1(phi0)) * sin$1(lambda0))
/ (cosPhi0 * cosPhi1 * sinLambda0Lambda1))
: (phi0 + phi1) / 2;
}
function clipAntimeridianInterpolate(from, to, direction, stream) {
var phi;
if (from == null) {
phi = direction * halfPi$1;
stream.point(-pi$1, phi);
stream.point(0, phi);
stream.point(pi$1, phi);
stream.point(pi$1, 0);
stream.point(pi$1, -phi);
stream.point(0, -phi);
stream.point(-pi$1, -phi);
stream.point(-pi$1, 0);
stream.point(-pi$1, phi);
} else if (abs$1(from[0] - to[0]) > epsilon$1) {
var lambda = from[0] < to[0] ? pi$1 : -pi$1;
phi = direction * lambda / 2;
stream.point(-lambda, phi);
stream.point(0, phi);
stream.point(lambda, phi);
} else {
stream.point(to[0], to[1]);
}
}
function clipCircle(radius) {
var cr = cos$1(radius),
delta = 2 * radians,
smallRadius = cr > 0,
notHemisphere = abs$1(cr) > epsilon$1; // TODO optimise for this common case
function interpolate(from, to, direction, stream) {
circleStream(stream, radius, delta, direction, from, to);
}
function visible(lambda, phi) {
return cos$1(lambda) * cos$1(phi) > cr;
}
// Takes a line and cuts into visible segments. Return values used for polygon
// clipping: 0 - there were intersections or the line was empty; 1 - no
// intersections 2 - there were intersections, and the first and last segments
// should be rejoined.
function clipLine(stream) {
var point0, // previous point
c0, // code for previous point
v0, // visibility of previous point
v00, // visibility of first point
clean; // no intersections
return {
lineStart: function() {
v00 = v0 = false;
clean = 1;
},
point: function(lambda, phi) {
var point1 = [lambda, phi],
point2,
v = visible(lambda, phi),
c = smallRadius
? v ? 0 : code(lambda, phi)
: v ? code(lambda + (lambda < 0 ? pi$1 : -pi$1), phi) : 0;
if (!point0 && (v00 = v0 = v)) stream.lineStart();
if (v !== v0) {
point2 = intersect(point0, point1);
if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2))
point1[2] = 1;
}
if (v !== v0) {
clean = 0;
if (v) {
// outside going in
stream.lineStart();
point2 = intersect(point1, point0);
stream.point(point2[0], point2[1]);
} else {
// inside going out
point2 = intersect(point0, point1);
stream.point(point2[0], point2[1], 2);
stream.lineEnd();
}
point0 = point2;
} else if (notHemisphere && point0 && smallRadius ^ v) {
var t;
// If the codes for two points are different, or are both zero,
// and there this segment intersects with the small circle.
if (!(c & c0) && (t = intersect(point1, point0, true))) {
clean = 0;
if (smallRadius) {
stream.lineStart();
stream.point(t[0][0], t[0][1]);
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
} else {
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
stream.lineStart();
stream.point(t[0][0], t[0][1], 3);
}
}
}
if (v && (!point0 || !pointEqual(point0, point1))) {
stream.point(point1[0], point1[1]);
}
point0 = point1, v0 = v, c0 = c;
},
lineEnd: function() {
if (v0) stream.lineEnd();
point0 = null;
},
// Rejoin first and last segments if there were intersections and the first
// and last points were visible.
clean: function() {
return clean | ((v00 && v0) << 1);
}
};
}
// Intersects the great circle between a and b with the clip circle.
function intersect(a, b, two) {
var pa = cartesian(a),
pb = cartesian(b);
// We have two planes, n1.p = d1 and n2.p = d2.
// Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 n2).
var n1 = [1, 0, 0], // normal
n2 = cartesianCross(pa, pb),
n2n2 = cartesianDot(n2, n2),
n1n2 = n2[0], // cartesianDot(n1, n2),
determinant = n2n2 - n1n2 * n1n2;
// Two polar points.
if (!determinant) return !two && a;
var c1 = cr * n2n2 / determinant,
c2 = -cr * n1n2 / determinant,
n1xn2 = cartesianCross(n1, n2),
A = cartesianScale(n1, c1),
B = cartesianScale(n2, c2);
cartesianAddInPlace(A, B);
// Solve |p(t)|^2 = 1.
var u = n1xn2,
w = cartesianDot(A, u),
uu = cartesianDot(u, u),
t2 = w * w - uu * (cartesianDot(A, A) - 1);
if (t2 < 0) return;
var t = sqrt$2(t2),
q = cartesianScale(u, (-w - t) / uu);
cartesianAddInPlace(q, A);
q = spherical(q);
if (!two) return q;
// Two intersection points.
var lambda0 = a[0],
lambda1 = b[0],
phi0 = a[1],
phi1 = b[1],
z;
if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z;
var delta = lambda1 - lambda0,
polar = abs$1(delta - pi$1) < epsilon$1,
meridian = polar || delta < epsilon$1;
if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z;
// Check that the first point is between a and b.
if (meridian
? polar
? phi0 + phi1 > 0 ^ q[1] < (abs$1(q[0] - lambda0) < epsilon$1 ? phi0 : phi1)
: phi0 <= q[1] && q[1] <= phi1
: delta > pi$1 ^ (lambda0 <= q[0] && q[0] <= lambda1)) {
var q1 = cartesianScale(u, (-w + t) / uu);
cartesianAddInPlace(q1, A);
return [q, spherical(q1)];
}
}
// Generates a 4-bit vector representing the location of a point relative to
// the small circle's bounding box.
function code(lambda, phi) {
var r = smallRadius ? radius : pi$1 - radius,
code = 0;
if (lambda < -r) code |= 1; // left
else if (lambda > r) code |= 2; // right
if (phi < -r) code |= 4; // below
else if (phi > r) code |= 8; // above
return code;
}
return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi$1, radius - pi$1]);
}
function clipLine(a, b, x0, y0, x1, y1) {
var ax = a[0],
ay = a[1],
bx = b[0],
by = b[1],
t0 = 0,
t1 = 1,
dx = bx - ax,
dy = by - ay,
r;
r = x0 - ax;
if (!dx && r > 0) return;
r /= dx;
if (dx < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dx > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = x1 - ax;
if (!dx && r < 0) return;
r /= dx;
if (dx < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dx > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
r = y0 - ay;
if (!dy && r > 0) return;
r /= dy;
if (dy < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dy > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = y1 - ay;
if (!dy && r < 0) return;
r /= dy;
if (dy < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dy > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;
if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;
return true;
}
var clipMax = 1e9, clipMin = -clipMax;
// TODO Use d3-polygons polygonContains here for the ring check?
// TODO Eliminate duplicate buffering in clipBuffer and polygon.push?
function clipRectangle(x0, y0, x1, y1) {
function visible(x, y) {
return x0 <= x && x <= x1 && y0 <= y && y <= y1;
}
function interpolate(from, to, direction, stream) {
var a = 0, a1 = 0;
if (from == null
|| (a = corner(from, direction)) !== (a1 = corner(to, direction))
|| comparePoint(from, to) < 0 ^ direction > 0) {
do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
while ((a = (a + direction + 4) % 4) !== a1);
} else {
stream.point(to[0], to[1]);
}
}
function corner(p, direction) {
return abs$1(p[0] - x0) < epsilon$1 ? direction > 0 ? 0 : 3
: abs$1(p[0] - x1) < epsilon$1 ? direction > 0 ? 2 : 1
: abs$1(p[1] - y0) < epsilon$1 ? direction > 0 ? 1 : 0
: direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon
}
function compareIntersection(a, b) {
return comparePoint(a.x, b.x);
}
function comparePoint(a, b) {
var ca = corner(a, 1),
cb = corner(b, 1);
return ca !== cb ? ca - cb
: ca === 0 ? b[1] - a[1]
: ca === 1 ? a[0] - b[0]
: ca === 2 ? a[1] - b[1]
: b[0] - a[0];
}
return function(stream) {
var activeStream = stream,
bufferStream = clipBuffer(),
segments,
polygon,
ring,
x__, y__, v__, // first point
x_, y_, v_, // previous point
first,
clean;
var clipStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: polygonStart,
polygonEnd: polygonEnd
};
function point(x, y) {
if (visible(x, y)) activeStream.point(x, y);
}
function polygonInside() {
var winding = 0;
for (var i = 0, n = polygon.length; i < n; ++i) {
for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {
a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];
if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }
else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }
}
}
return winding;
}
// Buffer geometry within a polygon and then clip it en masse.
function polygonStart() {
activeStream = bufferStream, segments = [], polygon = [], clean = true;
}
function polygonEnd() {
var startInside = polygonInside(),
cleanInside = clean && startInside,
visible = (segments = merge(segments)).length;
if (cleanInside || visible) {
stream.polygonStart();
if (cleanInside) {
stream.lineStart();
interpolate(null, null, 1, stream);
stream.lineEnd();
}
if (visible) {
clipRejoin(segments, compareIntersection, startInside, interpolate, stream);
}
stream.polygonEnd();
}
activeStream = stream, segments = polygon = ring = null;
}
function lineStart() {
clipStream.point = linePoint;
if (polygon) polygon.push(ring = []);
first = true;
v_ = false;
x_ = y_ = NaN;
}
// TODO rather than special-case polygons, simply handle them separately.
// Ideally, coincident intersection points should be jittered to avoid
// clipping issues.
function lineEnd() {
if (segments) {
linePoint(x__, y__);
if (v__ && v_) bufferStream.rejoin();
segments.push(bufferStream.result());
}
clipStream.point = point;
if (v_) activeStream.lineEnd();
}
function linePoint(x, y) {
var v = visible(x, y);
if (polygon) ring.push([x, y]);
if (first) {
x__ = x, y__ = y, v__ = v;
first = false;
if (v) {
activeStream.lineStart();
activeStream.point(x, y);
}
} else {
if (v && v_) activeStream.point(x, y);
else {
var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],
b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];
if (clipLine(a, b, x0, y0, x1, y1)) {
if (!v_) {
activeStream.lineStart();
activeStream.point(a[0], a[1]);
}
activeStream.point(b[0], b[1]);
if (!v) activeStream.lineEnd();
clean = false;
} else if (v) {
activeStream.lineStart();
activeStream.point(x, y);
clean = false;
}
}
}
x_ = x, y_ = y, v_ = v;
}
return clipStream;
};
}
function extent() {
var x0 = 0,
y0 = 0,
x1 = 960,
y1 = 500,
cache,
cacheStream,
clip;
return clip = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = clipRectangle(x0, y0, x1, y1)(cacheStream = stream);
},
extent: function(_) {
return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];
}
};
}
var lengthSum$1,
lambda0,
sinPhi0,
cosPhi0;
var lengthStream$1 = {
sphere: noop$1,
point: noop$1,
lineStart: lengthLineStart,
lineEnd: noop$1,
polygonStart: noop$1,
polygonEnd: noop$1
};
function lengthLineStart() {
lengthStream$1.point = lengthPointFirst$1;
lengthStream$1.lineEnd = lengthLineEnd;
}
function lengthLineEnd() {
lengthStream$1.point = lengthStream$1.lineEnd = noop$1;
}
function lengthPointFirst$1(lambda, phi) {
lambda *= radians, phi *= radians;
lambda0 = lambda, sinPhi0 = sin$1(phi), cosPhi0 = cos$1(phi);
lengthStream$1.point = lengthPoint$1;
}
function lengthPoint$1(lambda, phi) {
lambda *= radians, phi *= radians;
var sinPhi = sin$1(phi),
cosPhi = cos$1(phi),
delta = abs$1(lambda - lambda0),
cosDelta = cos$1(delta),
sinDelta = sin$1(delta),
x = cosPhi * sinDelta,
y = cosPhi0 * sinPhi - sinPhi0 * cosPhi * cosDelta,
z = sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosDelta;
lengthSum$1.add(atan2$1(sqrt$2(x * x + y * y), z));
lambda0 = lambda, sinPhi0 = sinPhi, cosPhi0 = cosPhi;
}
function length$1(object) {
lengthSum$1 = new Adder();
geoStream(object, lengthStream$1);
return +lengthSum$1;
}
var coordinates = [null, null],
object = {type: "LineString", coordinates: coordinates};
function distance(a, b) {
coordinates[0] = a;
coordinates[1] = b;
return length$1(object);
}
var containsObjectType = {
Feature: function(object, point) {
return containsGeometry(object.geometry, point);
},
FeatureCollection: function(object, point) {
var features = object.features, i = -1, n = features.length;
while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;
return false;
}
};
var containsGeometryType = {
Sphere: function() {
return true;
},
Point: function(object, point) {
return containsPoint(object.coordinates, point);
},
MultiPoint: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPoint(coordinates[i], point)) return true;
return false;
},
LineString: function(object, point) {
return containsLine(object.coordinates, point);
},
MultiLineString: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsLine(coordinates[i], point)) return true;
return false;
},
Polygon: function(object, point) {
return containsPolygon(object.coordinates, point);
},
MultiPolygon: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPolygon(coordinates[i], point)) return true;
return false;
},
GeometryCollection: function(object, point) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) if (containsGeometry(geometries[i], point)) return true;
return false;
}
};
function containsGeometry(geometry, point) {
return geometry && containsGeometryType.hasOwnProperty(geometry.type)
? containsGeometryType[geometry.type](geometry, point)
: false;
}
function containsPoint(coordinates, point) {
return distance(coordinates, point) === 0;
}
function containsLine(coordinates, point) {
var ao, bo, ab;
for (var i = 0, n = coordinates.length; i < n; i++) {
bo = distance(coordinates[i], point);
if (bo === 0) return true;
if (i > 0) {
ab = distance(coordinates[i], coordinates[i - 1]);
if (
ab > 0 &&
ao <= ab &&
bo <= ab &&
(ao + bo - ab) * (1 - Math.pow((ao - bo) / ab, 2)) < epsilon2 * ab
)
return true;
}
ao = bo;
}
return false;
}
function containsPolygon(coordinates, point) {
return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));
}
function ringRadians(ring) {
return ring = ring.map(pointRadians), ring.pop(), ring;
}
function pointRadians(point) {
return [point[0] * radians, point[1] * radians];
}
function contains$1(object, point) {
return (object && containsObjectType.hasOwnProperty(object.type)
? containsObjectType[object.type]
: containsGeometry)(object, point);
}
function graticuleX(y0, y1, dy) {
var y = range$2(y0, y1 - epsilon$1, dy).concat(y1);
return function(x) { return y.map(function(y) { return [x, y]; }); };
}
function graticuleY(x0, x1, dx) {
var x = range$2(x0, x1 - epsilon$1, dx).concat(x1);
return function(y) { return x.map(function(x) { return [x, y]; }); };
}
function graticule() {
var x1, x0, X1, X0,
y1, y0, Y1, Y0,
dx = 10, dy = dx, DX = 90, DY = 360,
x, y, X, Y,
precision = 2.5;
function graticule() {
return {type: "MultiLineString", coordinates: lines()};
}
function lines() {
return range$2(ceil(X0 / DX) * DX, X1, DX).map(X)
.concat(range$2(ceil(Y0 / DY) * DY, Y1, DY).map(Y))
.concat(range$2(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs$1(x % DX) > epsilon$1; }).map(x))
.concat(range$2(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs$1(y % DY) > epsilon$1; }).map(y));
}
graticule.lines = function() {
return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
};
graticule.outline = function() {
return {
type: "Polygon",
coordinates: [
X(X0).concat(
Y(Y1).slice(1),
X(X1).reverse().slice(1),
Y(Y0).reverse().slice(1))
]
};
};
graticule.extent = function(_) {
if (!arguments.length) return graticule.extentMinor();
return graticule.extentMajor(_).extentMinor(_);
};
graticule.extentMajor = function(_) {
if (!arguments.length) return [[X0, Y0], [X1, Y1]];
X0 = +_[0][0], X1 = +_[1][0];
Y0 = +_[0][1], Y1 = +_[1][1];
if (X0 > X1) _ = X0, X0 = X1, X1 = _;
if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
return graticule.precision(precision);
};
graticule.extentMinor = function(_) {
if (!arguments.length) return [[x0, y0], [x1, y1]];
x0 = +_[0][0], x1 = +_[1][0];
y0 = +_[0][1], y1 = +_[1][1];
if (x0 > x1) _ = x0, x0 = x1, x1 = _;
if (y0 > y1) _ = y0, y0 = y1, y1 = _;
return graticule.precision(precision);
};
graticule.step = function(_) {
if (!arguments.length) return graticule.stepMinor();
return graticule.stepMajor(_).stepMinor(_);
};
graticule.stepMajor = function(_) {
if (!arguments.length) return [DX, DY];
DX = +_[0], DY = +_[1];
return graticule;
};
graticule.stepMinor = function(_) {
if (!arguments.length) return [dx, dy];
dx = +_[0], dy = +_[1];
return graticule;
};
graticule.precision = function(_) {
if (!arguments.length) return precision;
precision = +_;
x = graticuleX(y0, y1, 90);
y = graticuleY(x0, x1, precision);
X = graticuleX(Y0, Y1, 90);
Y = graticuleY(X0, X1, precision);
return graticule;
};
return graticule
.extentMajor([[-180, -90 + epsilon$1], [180, 90 - epsilon$1]])
.extentMinor([[-180, -80 - epsilon$1], [180, 80 + epsilon$1]]);
}
function graticule10() {
return graticule()();
}
function interpolate(a, b) {
var x0 = a[0] * radians,
y0 = a[1] * radians,
x1 = b[0] * radians,
y1 = b[1] * radians,
cy0 = cos$1(y0),
sy0 = sin$1(y0),
cy1 = cos$1(y1),
sy1 = sin$1(y1),
kx0 = cy0 * cos$1(x0),
ky0 = cy0 * sin$1(x0),
kx1 = cy1 * cos$1(x1),
ky1 = cy1 * sin$1(x1),
d = 2 * asin$1(sqrt$2(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),
k = sin$1(d);
var interpolate = d ? function(t) {
var B = sin$1(t *= d) / k,
A = sin$1(d - t) / k,
x = A * kx0 + B * kx1,
y = A * ky0 + B * ky1,
z = A * sy0 + B * sy1;
return [
atan2$1(y, x) * degrees,
atan2$1(z, sqrt$2(x * x + y * y)) * degrees
];
} : function() {
return [x0 * degrees, y0 * degrees];
};
interpolate.distance = d;
return interpolate;
}
var identity$5 = x => x;
var areaSum = new Adder(),
areaRingSum = new Adder(),
x00$2,
y00$2,
x0$3,
y0$3;
var areaStream = {
point: noop$1,
lineStart: noop$1,
lineEnd: noop$1,
polygonStart: function() {
areaStream.lineStart = areaRingStart;
areaStream.lineEnd = areaRingEnd;
},
polygonEnd: function() {
areaStream.lineStart = areaStream.lineEnd = areaStream.point = noop$1;
areaSum.add(abs$1(areaRingSum));
areaRingSum = new Adder();
},
result: function() {
var area = areaSum / 2;
areaSum = new Adder();
return area;
}
};
function areaRingStart() {
areaStream.point = areaPointFirst;
}
function areaPointFirst(x, y) {
areaStream.point = areaPoint;
x00$2 = x0$3 = x, y00$2 = y0$3 = y;
}
function areaPoint(x, y) {
areaRingSum.add(y0$3 * x - x0$3 * y);
x0$3 = x, y0$3 = y;
}
function areaRingEnd() {
areaPoint(x00$2, y00$2);
}
var pathArea = areaStream;
var x0$2 = Infinity,
y0$2 = x0$2,
x1 = -x0$2,
y1 = x1;
var boundsStream = {
point: boundsPoint,
lineStart: noop$1,
lineEnd: noop$1,
polygonStart: noop$1,
polygonEnd: noop$1,
result: function() {
var bounds = [[x0$2, y0$2], [x1, y1]];
x1 = y1 = -(y0$2 = x0$2 = Infinity);
return bounds;
}
};
function boundsPoint(x, y) {
if (x < x0$2) x0$2 = x;
if (x > x1) x1 = x;
if (y < y0$2) y0$2 = y;
if (y > y1) y1 = y;
}
var boundsStream$1 = boundsStream;
// TODO Enforce positive area for exterior, negative area for interior?
var X0 = 0,
Y0 = 0,
Z0 = 0,
X1 = 0,
Y1 = 0,
Z1 = 0,
X2 = 0,
Y2 = 0,
Z2 = 0,
x00$1,
y00$1,
x0$1,
y0$1;
var centroidStream = {
point: centroidPoint,
lineStart: centroidLineStart,
lineEnd: centroidLineEnd,
polygonStart: function() {
centroidStream.lineStart = centroidRingStart;
centroidStream.lineEnd = centroidRingEnd;
},
polygonEnd: function() {
centroidStream.point = centroidPoint;
centroidStream.lineStart = centroidLineStart;
centroidStream.lineEnd = centroidLineEnd;
},
result: function() {
var centroid = Z2 ? [X2 / Z2, Y2 / Z2]
: Z1 ? [X1 / Z1, Y1 / Z1]
: Z0 ? [X0 / Z0, Y0 / Z0]
: [NaN, NaN];
X0 = Y0 = Z0 =
X1 = Y1 = Z1 =
X2 = Y2 = Z2 = 0;
return centroid;
}
};
function centroidPoint(x, y) {
X0 += x;
Y0 += y;
++Z0;
}
function centroidLineStart() {
centroidStream.point = centroidPointFirstLine;
}
function centroidPointFirstLine(x, y) {
centroidStream.point = centroidPointLine;
centroidPoint(x0$1 = x, y0$1 = y);
}
function centroidPointLine(x, y) {
var dx = x - x0$1, dy = y - y0$1, z = sqrt$2(dx * dx + dy * dy);
X1 += z * (x0$1 + x) / 2;
Y1 += z * (y0$1 + y) / 2;
Z1 += z;
centroidPoint(x0$1 = x, y0$1 = y);
}
function centroidLineEnd() {
centroidStream.point = centroidPoint;
}
function centroidRingStart() {
centroidStream.point = centroidPointFirstRing;
}
function centroidRingEnd() {
centroidPointRing(x00$1, y00$1);
}
function centroidPointFirstRing(x, y) {
centroidStream.point = centroidPointRing;
centroidPoint(x00$1 = x0$1 = x, y00$1 = y0$1 = y);
}
function centroidPointRing(x, y) {
var dx = x - x0$1,
dy = y - y0$1,
z = sqrt$2(dx * dx + dy * dy);
X1 += z * (x0$1 + x) / 2;
Y1 += z * (y0$1 + y) / 2;
Z1 += z;
z = y0$1 * x - x0$1 * y;
X2 += z * (x0$1 + x);
Y2 += z * (y0$1 + y);
Z2 += z * 3;
centroidPoint(x0$1 = x, y0$1 = y);
}
var pathCentroid = centroidStream;
function PathContext(context) {
this._context = context;
}
PathContext.prototype = {
_radius: 4.5,
pointRadius: function(_) {
return this._radius = _, this;
},
polygonStart: function() {
this._line = 0;
},
polygonEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line === 0) this._context.closePath();
this._point = NaN;
},
point: function(x, y) {
switch (this._point) {
case 0: {
this._context.moveTo(x, y);
this._point = 1;
break;
}
case 1: {
this._context.lineTo(x, y);
break;
}
default: {
this._context.moveTo(x + this._radius, y);
this._context.arc(x, y, this._radius, 0, tau$1);
break;
}
}
},
result: noop$1
};
var lengthSum = new Adder(),
lengthRing,
x00,
y00,
x0,
y0;
var lengthStream = {
point: noop$1,
lineStart: function() {
lengthStream.point = lengthPointFirst;
},
lineEnd: function() {
if (lengthRing) lengthPoint(x00, y00);
lengthStream.point = noop$1;
},
polygonStart: function() {
lengthRing = true;
},
polygonEnd: function() {
lengthRing = null;
},
result: function() {
var length = +lengthSum;
lengthSum = new Adder();
return length;
}
};
function lengthPointFirst(x, y) {
lengthStream.point = lengthPoint;
x00 = x0 = x, y00 = y0 = y;
}
function lengthPoint(x, y) {
x0 -= x, y0 -= y;
lengthSum.add(sqrt$2(x0 * x0 + y0 * y0));
x0 = x, y0 = y;
}
var pathMeasure = lengthStream;
// Simple caching for constant-radius points.
let cacheDigits, cacheAppend, cacheRadius, cacheCircle;
class PathString {
constructor(digits) {
this._append = digits == null ? append : appendRound(digits);
this._radius = 4.5;
this._ = "";
}
pointRadius(_) {
this._radius = +_;
return this;
}
polygonStart() {
this._line = 0;
}
polygonEnd() {
this._line = NaN;
}
lineStart() {
this._point = 0;
}
lineEnd() {
if (this._line === 0) this._ += "Z";
this._point = NaN;
}
point(x, y) {
switch (this._point) {
case 0: {
this._append`M${x},${y}`;
this._point = 1;
break;
}
case 1: {
this._append`L${x},${y}`;
break;
}
default: {
this._append`M${x},${y}`;
if (this._radius !== cacheRadius || this._append !== cacheAppend) {
const r = this._radius;
const s = this._;
this._ = ""; // stash the old string so we can cache the circle path fragment
this._append`m0,${r}a${r},${r} 0 1,1 0,${-2 * r}a${r},${r} 0 1,1 0,${2 * r}z`;
cacheRadius = r;
cacheAppend = this._append;
cacheCircle = this._;
this._ = s;
}
this._ += cacheCircle;
break;
}
}
}
result() {
const result = this._;
this._ = "";
return result.length ? result : null;
}
}
function append(strings) {
let i = 1;
this._ += strings[0];
for (const j = strings.length; i < j; ++i) {
this._ += arguments[i] + strings[i];
}
}
function appendRound(digits) {
const d = Math.floor(digits);
if (!(d >= 0)) throw new RangeError(`invalid digits: ${digits}`);
if (d > 15) return append;
if (d !== cacheDigits) {
const k = 10 ** d;
cacheDigits = d;
cacheAppend = function append(strings) {
let i = 1;
this._ += strings[0];
for (const j = strings.length; i < j; ++i) {
this._ += Math.round(arguments[i] * k) / k + strings[i];
}
};
}
return cacheAppend;
}
function index$2(projection, context) {
let digits = 3,
pointRadius = 4.5,
projectionStream,
contextStream;
function path(object) {
if (object) {
if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments));
geoStream(object, projectionStream(contextStream));
}
return contextStream.result();
}
path.area = function(object) {
geoStream(object, projectionStream(pathArea));
return pathArea.result();
};
path.measure = function(object) {
geoStream(object, projectionStream(pathMeasure));
return pathMeasure.result();
};
path.bounds = function(object) {
geoStream(object, projectionStream(boundsStream$1));
return boundsStream$1.result();
};
path.centroid = function(object) {
geoStream(object, projectionStream(pathCentroid));
return pathCentroid.result();
};
path.projection = function(_) {
if (!arguments.length) return projection;
projectionStream = _ == null ? (projection = null, identity$5) : (projection = _).stream;
return path;
};
path.context = function(_) {
if (!arguments.length) return context;
contextStream = _ == null ? (context = null, new PathString(digits)) : new PathContext(context = _);
if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius);
return path;
};
path.pointRadius = function(_) {
if (!arguments.length) return pointRadius;
pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_);
return path;
};
path.digits = function(_) {
if (!arguments.length) return digits;
if (_ == null) digits = null;
else {
const d = Math.floor(_);
if (!(d >= 0)) throw new RangeError(`invalid digits: ${_}`);
digits = d;
}
if (context === null) contextStream = new PathString(digits);
return path;
};
return path.projection(projection).digits(digits).context(context);
}
function transform$1(methods) {
return {
stream: transformer$3(methods)
};
}
function transformer$3(methods) {
return function(stream) {
var s = new TransformStream;
for (var key in methods) s[key] = methods[key];
s.stream = stream;
return s;
};
}
function TransformStream() {}
TransformStream.prototype = {
constructor: TransformStream,
point: function(x, y) { this.stream.point(x, y); },
sphere: function() { this.stream.sphere(); },
lineStart: function() { this.stream.lineStart(); },
lineEnd: function() { this.stream.lineEnd(); },
polygonStart: function() { this.stream.polygonStart(); },
polygonEnd: function() { this.stream.polygonEnd(); }
};
function fit(projection, fitBounds, object) {
var clip = projection.clipExtent && projection.clipExtent();
projection.scale(150).translate([0, 0]);
if (clip != null) projection.clipExtent(null);
geoStream(object, projection.stream(boundsStream$1));
fitBounds(boundsStream$1.result());
if (clip != null) projection.clipExtent(clip);
return projection;
}
function fitExtent(projection, extent, object) {
return fit(projection, function(b) {
var w = extent[1][0] - extent[0][0],
h = extent[1][1] - extent[0][1],
k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])),
x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2,
y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2;
projection.scale(150 * k).translate([x, y]);
}, object);
}
function fitSize(projection, size, object) {
return fitExtent(projection, [[0, 0], size], object);
}
function fitWidth(projection, width, object) {
return fit(projection, function(b) {
var w = +width,
k = w / (b[1][0] - b[0][0]),
x = (w - k * (b[1][0] + b[0][0])) / 2,
y = -k * b[0][1];
projection.scale(150 * k).translate([x, y]);
}, object);
}
function fitHeight(projection, height, object) {
return fit(projection, function(b) {
var h = +height,
k = h / (b[1][1] - b[0][1]),
x = -k * b[0][0],
y = (h - k * (b[1][1] + b[0][1])) / 2;
projection.scale(150 * k).translate([x, y]);
}, object);
}
var maxDepth = 16, // maximum depth of subdivision
cosMinDistance = cos$1(30 * radians); // cos(minimum angular distance)
function resample(project, delta2) {
return +delta2 ? resample$1(project, delta2) : resampleNone(project);
}
function resampleNone(project) {
return transformer$3({
point: function(x, y) {
x = project(x, y);
this.stream.point(x[0], x[1]);
}
});
}
function resample$1(project, delta2) {
function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) {
var dx = x1 - x0,
dy = y1 - y0,
d2 = dx * dx + dy * dy;
if (d2 > 4 * delta2 && depth--) {
var a = a0 + a1,
b = b0 + b1,
c = c0 + c1,
m = sqrt$2(a * a + b * b + c * c),
phi2 = asin$1(c /= m),
lambda2 = abs$1(abs$1(c) - 1) < epsilon$1 || abs$1(lambda0 - lambda1) < epsilon$1 ? (lambda0 + lambda1) / 2 : atan2$1(b, a),
p = project(lambda2, phi2),
x2 = p[0],
y2 = p[1],
dx2 = x2 - x0,
dy2 = y2 - y0,
dz = dy * dx2 - dx * dy2;
if (dz * dz / d2 > delta2 // perpendicular projected distance
|| abs$1((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end
|| a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream);
stream.point(x2, y2);
resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream);
}
}
}
return function(stream) {
var lambda00, x00, y00, a00, b00, c00, // first point
lambda0, x0, y0, a0, b0, c0; // previous point
var resampleStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; },
polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; }
};
function point(x, y) {
x = project(x, y);
stream.point(x[0], x[1]);
}
function lineStart() {
x0 = NaN;
resampleStream.point = linePoint;
stream.lineStart();
}
function linePoint(lambda, phi) {
var c = cartesian([lambda, phi]), p = project(lambda, phi);
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);
stream.point(x0, y0);
}
function lineEnd() {
resampleStream.point = point;
stream.lineEnd();
}
function ringStart() {
lineStart();
resampleStream.point = ringPoint;
resampleStream.lineEnd = ringEnd;
}
function ringPoint(lambda, phi) {
linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;
resampleStream.point = linePoint;
}
function ringEnd() {
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream);
resampleStream.lineEnd = lineEnd;
lineEnd();
}
return resampleStream;
};
}
var transformRadians = transformer$3({
point: function(x, y) {
this.stream.point(x * radians, y * radians);
}
});
function transformRotate(rotate) {
return transformer$3({
point: function(x, y) {
var r = rotate(x, y);
return this.stream.point(r[0], r[1]);
}
});
}
function scaleTranslate(k, dx, dy, sx, sy) {
function transform(x, y) {
x *= sx; y *= sy;
return [dx + k * x, dy - k * y];
}
transform.invert = function(x, y) {
return [(x - dx) / k * sx, (dy - y) / k * sy];
};
return transform;
}
function scaleTranslateRotate(k, dx, dy, sx, sy, alpha) {
if (!alpha) return scaleTranslate(k, dx, dy, sx, sy);
var cosAlpha = cos$1(alpha),
sinAlpha = sin$1(alpha),
a = cosAlpha * k,
b = sinAlpha * k,
ai = cosAlpha / k,
bi = sinAlpha / k,
ci = (sinAlpha * dy - cosAlpha * dx) / k,
fi = (sinAlpha * dx + cosAlpha * dy) / k;
function transform(x, y) {
x *= sx; y *= sy;
return [a * x - b * y + dx, dy - b * x - a * y];
}
transform.invert = function(x, y) {
return [sx * (ai * x - bi * y + ci), sy * (fi - bi * x - ai * y)];
};
return transform;
}
function projection(project) {
return projectionMutator(function() { return project; })();
}
function projectionMutator(projectAt) {
var project,
k = 150, // scale
x = 480, y = 250, // translate
lambda = 0, phi = 0, // center
deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, // pre-rotate
alpha = 0, // post-rotate angle
sx = 1, // reflectX
sy = 1, // reflectX
theta = null, preclip = clipAntimeridian, // pre-clip angle
x0 = null, y0, x1, y1, postclip = identity$5, // post-clip extent
delta2 = 0.5, // precision
projectResample,
projectTransform,
projectRotateTransform,
cache,
cacheStream;
function projection(point) {
return projectRotateTransform(point[0] * radians, point[1] * radians);
}
function invert(point) {
point = projectRotateTransform.invert(point[0], point[1]);
return point && [point[0] * degrees, point[1] * degrees];
}
projection.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = transformRadians(transformRotate(rotate)(preclip(projectResample(postclip(cacheStream = stream)))));
};
projection.preclip = function(_) {
return arguments.length ? (preclip = _, theta = undefined, reset()) : preclip;
};
projection.postclip = function(_) {
return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
};
projection.clipAngle = function(_) {
return arguments.length ? (preclip = +_ ? clipCircle(theta = _ * radians) : (theta = null, clipAntimeridian), reset()) : theta * degrees;
};
projection.clipExtent = function(_) {
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$5) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
projection.scale = function(_) {
return arguments.length ? (k = +_, recenter()) : k;
};
projection.translate = function(_) {
return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y];
};
projection.center = function(_) {
return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees];
};
projection.rotate = function(_) {
return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees];
};
projection.angle = function(_) {
return arguments.length ? (alpha = _ % 360 * radians, recenter()) : alpha * degrees;
};
projection.reflectX = function(_) {
return arguments.length ? (sx = _ ? -1 : 1, recenter()) : sx < 0;
};
projection.reflectY = function(_) {
return arguments.length ? (sy = _ ? -1 : 1, recenter()) : sy < 0;
};
projection.precision = function(_) {
return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt$2(delta2);
};
projection.fitExtent = function(extent, object) {
return fitExtent(projection, extent, object);
};
projection.fitSize = function(size, object) {
return fitSize(projection, size, object);
};
projection.fitWidth = function(width, object) {
return fitWidth(projection, width, object);
};
projection.fitHeight = function(height, object) {
return fitHeight(projection, height, object);
};
function recenter() {
var center = scaleTranslateRotate(k, 0, 0, sx, sy, alpha).apply(null, project(lambda, phi)),
transform = scaleTranslateRotate(k, x - center[0], y - center[1], sx, sy, alpha);
rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma);
projectTransform = compose(project, transform);
projectRotateTransform = compose(rotate, projectTransform);
projectResample = resample(projectTransform, delta2);
return reset();
}
function reset() {
cache = cacheStream = null;
return projection;
}
return function() {
project = projectAt.apply(this, arguments);
projection.invert = project.invert && invert;
return recenter();
};
}
function conicProjection(projectAt) {
var phi0 = 0,
phi1 = pi$1 / 3,
m = projectionMutator(projectAt),
p = m(phi0, phi1);
p.parallels = function(_) {
return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees];
};
return p;
}
function cylindricalEqualAreaRaw(phi0) {
var cosPhi0 = cos$1(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, sin$1(phi) / cosPhi0];
}
forward.invert = function(x, y) {
return [x / cosPhi0, asin$1(y * cosPhi0)];
};
return forward;
}
function conicEqualAreaRaw(y0, y1) {
var sy0 = sin$1(y0), n = (sy0 + sin$1(y1)) / 2;
// Are the parallels symmetrical around the Equator?
if (abs$1(n) < epsilon$1) return cylindricalEqualAreaRaw(y0);
var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt$2(c) / n;
function project(x, y) {
var r = sqrt$2(c - 2 * n * sin$1(y)) / n;
return [r * sin$1(x *= n), r0 - r * cos$1(x)];
}
project.invert = function(x, y) {
var r0y = r0 - y,
l = atan2$1(x, abs$1(r0y)) * sign$1(r0y);
if (r0y * n < 0)
l -= pi$1 * sign$1(x) * sign$1(r0y);
return [l / n, asin$1((c - (x * x + r0y * r0y) * n * n) / (2 * n))];
};
return project;
}
function conicEqualArea() {
return conicProjection(conicEqualAreaRaw)
.scale(155.424)
.center([0, 33.6442]);
}
function albers() {
return conicEqualArea()
.parallels([29.5, 45.5])
.scale(1070)
.translate([480, 250])
.rotate([96, 0])
.center([-0.6, 38.7]);
}
// The projections must have mutually exclusive clip regions on the sphere,
// as this will avoid emitting interleaving lines and polygons.
function multiplex(streams) {
var n = streams.length;
return {
point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); },
sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); },
lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); },
lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); },
polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); },
polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); }
};
}
// A composite projection for the United States, configured by default for
// 960×500. The projection also works quite well at 960×600 if you change the
// scale to 1285 and adjust the translate accordingly. The set of standard
// parallels for each region comes from USGS, which is published here:
// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
function albersUsa() {
var cache,
cacheStream,
lower48 = albers(), lower48Point,
alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338
hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007
point, pointStream = {point: function(x, y) { point = [x, y]; }};
function albersUsa(coordinates) {
var x = coordinates[0], y = coordinates[1];
return point = null,
(lower48Point.point(x, y), point)
|| (alaskaPoint.point(x, y), point)
|| (hawaiiPoint.point(x, y), point);
}
albersUsa.invert = function(coordinates) {
var k = lower48.scale(),
t = lower48.translate(),
x = (coordinates[0] - t[0]) / k,
y = (coordinates[1] - t[1]) / k;
return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska
: y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii
: lower48).invert(coordinates);
};
albersUsa.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]);
};
albersUsa.precision = function(_) {
if (!arguments.length) return lower48.precision();
lower48.precision(_), alaska.precision(_), hawaii.precision(_);
return reset();
};
albersUsa.scale = function(_) {
if (!arguments.length) return lower48.scale();
lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_);
return albersUsa.translate(lower48.translate());
};
albersUsa.translate = function(_) {
if (!arguments.length) return lower48.translate();
var k = lower48.scale(), x = +_[0], y = +_[1];
lower48Point = lower48
.translate(_)
.clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]])
.stream(pointStream);
alaskaPoint = alaska
.translate([x - 0.307 * k, y + 0.201 * k])
.clipExtent([[x - 0.425 * k + epsilon$1, y + 0.120 * k + epsilon$1], [x - 0.214 * k - epsilon$1, y + 0.234 * k - epsilon$1]])
.stream(pointStream);
hawaiiPoint = hawaii
.translate([x - 0.205 * k, y + 0.212 * k])
.clipExtent([[x - 0.214 * k + epsilon$1, y + 0.166 * k + epsilon$1], [x - 0.115 * k - epsilon$1, y + 0.234 * k - epsilon$1]])
.stream(pointStream);
return reset();
};
albersUsa.fitExtent = function(extent, object) {
return fitExtent(albersUsa, extent, object);
};
albersUsa.fitSize = function(size, object) {
return fitSize(albersUsa, size, object);
};
albersUsa.fitWidth = function(width, object) {
return fitWidth(albersUsa, width, object);
};
albersUsa.fitHeight = function(height, object) {
return fitHeight(albersUsa, height, object);
};
function reset() {
cache = cacheStream = null;
return albersUsa;
}
return albersUsa.scale(1070);
}
function azimuthalRaw(scale) {
return function(x, y) {
var cx = cos$1(x),
cy = cos$1(y),
k = scale(cx * cy);
if (k === Infinity) return [2, 0];
return [
k * cy * sin$1(x),
k * sin$1(y)
];
}
}
function azimuthalInvert(angle) {
return function(x, y) {
var z = sqrt$2(x * x + y * y),
c = angle(z),
sc = sin$1(c),
cc = cos$1(c);
return [
atan2$1(x * sc, z * cc),
asin$1(z && y * sc / z)
];
}
}
var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) {
return sqrt$2(2 / (1 + cxcy));
});
azimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) {
return 2 * asin$1(z / 2);
});
function azimuthalEqualArea() {
return projection(azimuthalEqualAreaRaw)
.scale(124.75)
.clipAngle(180 - 1e-3);
}
var azimuthalEquidistantRaw = azimuthalRaw(function(c) {
return (c = acos$1(c)) && c / sin$1(c);
});
azimuthalEquidistantRaw.invert = azimuthalInvert(function(z) {
return z;
});
function azimuthalEquidistant() {
return projection(azimuthalEquidistantRaw)
.scale(79.4188)
.clipAngle(180 - 1e-3);
}
function mercatorRaw(lambda, phi) {
return [lambda, log$1(tan((halfPi$1 + phi) / 2))];
}
mercatorRaw.invert = function(x, y) {
return [x, 2 * atan(exp(y)) - halfPi$1];
};
function mercator() {
return mercatorProjection(mercatorRaw)
.scale(961 / tau$1);
}
function mercatorProjection(project) {
var m = projection(project),
center = m.center,
scale = m.scale,
translate = m.translate,
clipExtent = m.clipExtent,
x0 = null, y0, x1, y1; // clip extent
m.scale = function(_) {
return arguments.length ? (scale(_), reclip()) : scale();
};
m.translate = function(_) {
return arguments.length ? (translate(_), reclip()) : translate();
};
m.center = function(_) {
return arguments.length ? (center(_), reclip()) : center();
};
m.clipExtent = function(_) {
return arguments.length ? ((_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1])), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
function reclip() {
var k = pi$1 * scale(),
t = m(rotation(m.rotate()).invert([0, 0]));
return clipExtent(x0 == null
? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw
? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]]
: [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]);
}
return reclip();
}
function tany(y) {
return tan((halfPi$1 + y) / 2);
}
function conicConformalRaw(y0, y1) {
var cy0 = cos$1(y0),
n = y0 === y1 ? sin$1(y0) : log$1(cy0 / cos$1(y1)) / log$1(tany(y1) / tany(y0)),
f = cy0 * pow$1(tany(y0), n) / n;
if (!n) return mercatorRaw;
function project(x, y) {
if (f > 0) { if (y < -halfPi$1 + epsilon$1) y = -halfPi$1 + epsilon$1; }
else { if (y > halfPi$1 - epsilon$1) y = halfPi$1 - epsilon$1; }
var r = f / pow$1(tany(y), n);
return [r * sin$1(n * x), f - r * cos$1(n * x)];
}
project.invert = function(x, y) {
var fy = f - y, r = sign$1(n) * sqrt$2(x * x + fy * fy),
l = atan2$1(x, abs$1(fy)) * sign$1(fy);
if (fy * n < 0)
l -= pi$1 * sign$1(x) * sign$1(fy);
return [l / n, 2 * atan(pow$1(f / r, 1 / n)) - halfPi$1];
};
return project;
}
function conicConformal() {
return conicProjection(conicConformalRaw)
.scale(109.5)
.parallels([30, 30]);
}
function equirectangularRaw(lambda, phi) {
return [lambda, phi];
}
equirectangularRaw.invert = equirectangularRaw;
function equirectangular() {
return projection(equirectangularRaw)
.scale(152.63);
}
function conicEquidistantRaw(y0, y1) {
var cy0 = cos$1(y0),
n = y0 === y1 ? sin$1(y0) : (cy0 - cos$1(y1)) / (y1 - y0),
g = cy0 / n + y0;
if (abs$1(n) < epsilon$1) return equirectangularRaw;
function project(x, y) {
var gy = g - y, nx = n * x;
return [gy * sin$1(nx), g - gy * cos$1(nx)];
}
project.invert = function(x, y) {
var gy = g - y,
l = atan2$1(x, abs$1(gy)) * sign$1(gy);
if (gy * n < 0)
l -= pi$1 * sign$1(x) * sign$1(gy);
return [l / n, g - sign$1(n) * sqrt$2(x * x + gy * gy)];
};
return project;
}
function conicEquidistant() {
return conicProjection(conicEquidistantRaw)
.scale(131.154)
.center([0, 13.9389]);
}
var A1 = 1.340264,
A2 = -0.081106,
A3 = 0.000893,
A4 = 0.003796,
M = sqrt$2(3) / 2,
iterations = 12;
function equalEarthRaw(lambda, phi) {
var l = asin$1(M * sin$1(phi)), l2 = l * l, l6 = l2 * l2 * l2;
return [
lambda * cos$1(l) / (M * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2))),
l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2))
];
}
equalEarthRaw.invert = function(x, y) {
var l = y, l2 = l * l, l6 = l2 * l2 * l2;
for (var i = 0, delta, fy, fpy; i < iterations; ++i) {
fy = l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2)) - y;
fpy = A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2);
l -= delta = fy / fpy, l2 = l * l, l6 = l2 * l2 * l2;
if (abs$1(delta) < epsilon2) break;
}
return [
M * x * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2)) / cos$1(l),
asin$1(sin$1(l) / M)
];
};
function equalEarth() {
return projection(equalEarthRaw)
.scale(177.158);
}
function gnomonicRaw(x, y) {
var cy = cos$1(y), k = cos$1(x) * cy;
return [cy * sin$1(x) / k, sin$1(y) / k];
}
gnomonicRaw.invert = azimuthalInvert(atan);
function gnomonic() {
return projection(gnomonicRaw)
.scale(144.049)
.clipAngle(60);
}
function identity$4() {
var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, // scale, translate and reflect
alpha = 0, ca, sa, // angle
x0 = null, y0, x1, y1, // clip extent
kx = 1, ky = 1,
transform = transformer$3({
point: function(x, y) {
var p = projection([x, y]);
this.stream.point(p[0], p[1]);
}
}),
postclip = identity$5,
cache,
cacheStream;
function reset() {
kx = k * sx;
ky = k * sy;
cache = cacheStream = null;
return projection;
}
function projection (p) {
var x = p[0] * kx, y = p[1] * ky;
if (alpha) {
var t = y * ca - x * sa;
x = x * ca + y * sa;
y = t;
}
return [x + tx, y + ty];
}
projection.invert = function(p) {
var x = p[0] - tx, y = p[1] - ty;
if (alpha) {
var t = y * ca + x * sa;
x = x * ca - y * sa;
y = t;
}
return [x / kx, y / ky];
};
projection.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = transform(postclip(cacheStream = stream));
};
projection.postclip = function(_) {
return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
};
projection.clipExtent = function(_) {
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$5) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
projection.scale = function(_) {
return arguments.length ? (k = +_, reset()) : k;
};
projection.translate = function(_) {
return arguments.length ? (tx = +_[0], ty = +_[1], reset()) : [tx, ty];
};
projection.angle = function(_) {
return arguments.length ? (alpha = _ % 360 * radians, sa = sin$1(alpha), ca = cos$1(alpha), reset()) : alpha * degrees;
};
projection.reflectX = function(_) {
return arguments.length ? (sx = _ ? -1 : 1, reset()) : sx < 0;
};
projection.reflectY = function(_) {
return arguments.length ? (sy = _ ? -1 : 1, reset()) : sy < 0;
};
projection.fitExtent = function(extent, object) {
return fitExtent(projection, extent, object);
};
projection.fitSize = function(size, object) {
return fitSize(projection, size, object);
};
projection.fitWidth = function(width, object) {
return fitWidth(projection, width, object);
};
projection.fitHeight = function(height, object) {
return fitHeight(projection, height, object);
};
return projection;
}
function naturalEarth1Raw(lambda, phi) {
var phi2 = phi * phi, phi4 = phi2 * phi2;
return [
lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))),
phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4)))
];
}
naturalEarth1Raw.invert = function(x, y) {
var phi = y, i = 25, delta;
do {
var phi2 = phi * phi, phi4 = phi2 * phi2;
phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) /
(1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4)));
} while (abs$1(delta) > epsilon$1 && --i > 0);
return [
x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))),
phi
];
};
function naturalEarth1() {
return projection(naturalEarth1Raw)
.scale(175.295);
}
function orthographicRaw(x, y) {
return [cos$1(y) * sin$1(x), sin$1(y)];
}
orthographicRaw.invert = azimuthalInvert(asin$1);
function orthographic() {
return projection(orthographicRaw)
.scale(249.5)
.clipAngle(90 + epsilon$1);
}
function stereographicRaw(x, y) {
var cy = cos$1(y), k = 1 + cos$1(x) * cy;
return [cy * sin$1(x) / k, sin$1(y) / k];
}
stereographicRaw.invert = azimuthalInvert(function(z) {
return 2 * atan(z);
});
function stereographic() {
return projection(stereographicRaw)
.scale(250)
.clipAngle(142);
}
function transverseMercatorRaw(lambda, phi) {
return [log$1(tan((halfPi$1 + phi) / 2)), -lambda];
}
transverseMercatorRaw.invert = function(x, y) {
return [-y, 2 * atan(exp(x)) - halfPi$1];
};
function transverseMercator() {
var m = mercatorProjection(transverseMercatorRaw),
center = m.center,
rotate = m.rotate;
m.center = function(_) {
return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]);
};
m.rotate = function(_) {
return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]);
};
return rotate([0, 0, 90])
.scale(159.155);
}
function defaultSeparation$1(a, b) {
return a.parent === b.parent ? 1 : 2;
}
function meanX(children) {
return children.reduce(meanXReduce, 0) / children.length;
}
function meanXReduce(x, c) {
return x + c.x;
}
function maxY(children) {
return 1 + children.reduce(maxYReduce, 0);
}
function maxYReduce(y, c) {
return Math.max(y, c.y);
}
function leafLeft(node) {
var children;
while (children = node.children) node = children[0];
return node;
}
function leafRight(node) {
var children;
while (children = node.children) node = children[children.length - 1];
return node;
}
function cluster() {
var separation = defaultSeparation$1,
dx = 1,
dy = 1,
nodeSize = false;
function cluster(root) {
var previousNode,
x = 0;
// First walk, computing the initial x & y values.
root.eachAfter(function(node) {
var children = node.children;
if (children) {
node.x = meanX(children);
node.y = maxY(children);
} else {
node.x = previousNode ? x += separation(node, previousNode) : 0;
node.y = 0;
previousNode = node;
}
});
var left = leafLeft(root),
right = leafRight(root),
x0 = left.x - separation(left, right) / 2,
x1 = right.x + separation(right, left) / 2;
// Second walk, normalizing x & y to the desired size.
return root.eachAfter(nodeSize ? function(node) {
node.x = (node.x - root.x) * dx;
node.y = (root.y - node.y) * dy;
} : function(node) {
node.x = (node.x - x0) / (x1 - x0) * dx;
node.y = (1 - (root.y ? node.y / root.y : 1)) * dy;
});
}
cluster.separation = function(x) {
return arguments.length ? (separation = x, cluster) : separation;
};
cluster.size = function(x) {
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? null : [dx, dy]);
};
cluster.nodeSize = function(x) {
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? [dx, dy] : null);
};
return cluster;
}
function count(node) {
var sum = 0,
children = node.children,
i = children && children.length;
if (!i) sum = 1;
else while (--i >= 0) sum += children[i].value;
node.value = sum;
}
function node_count() {
return this.eachAfter(count);
}
function node_each(callback, that) {
let index = -1;
for (const node of this) {
callback.call(that, node, ++index, this);
}
return this;
}
function node_eachBefore(callback, that) {
var node = this, nodes = [node], children, i, index = -1;
while (node = nodes.pop()) {
callback.call(that, node, ++index, this);
if (children = node.children) {
for (i = children.length - 1; i >= 0; --i) {
nodes.push(children[i]);
}
}
}
return this;
}
function node_eachAfter(callback, that) {
var node = this, nodes = [node], next = [], children, i, n, index = -1;
while (node = nodes.pop()) {
next.push(node);
if (children = node.children) {
for (i = 0, n = children.length; i < n; ++i) {
nodes.push(children[i]);
}
}
}
while (node = next.pop()) {
callback.call(that, node, ++index, this);
}
return this;
}
function node_find(callback, that) {
let index = -1;
for (const node of this) {
if (callback.call(that, node, ++index, this)) {
return node;
}
}
}
function node_sum(value) {
return this.eachAfter(function(node) {
var sum = +value(node.data) || 0,
children = node.children,
i = children && children.length;
while (--i >= 0) sum += children[i].value;
node.value = sum;
});
}
function node_sort(compare) {
return this.eachBefore(function(node) {
if (node.children) {
node.children.sort(compare);
}
});
}
function node_path(end) {
var start = this,
ancestor = leastCommonAncestor(start, end),
nodes = [start];
while (start !== ancestor) {
start = start.parent;
nodes.push(start);
}
var k = nodes.length;
while (end !== ancestor) {
nodes.splice(k, 0, end);
end = end.parent;
}
return nodes;
}
function leastCommonAncestor(a, b) {
if (a === b) return a;
var aNodes = a.ancestors(),
bNodes = b.ancestors(),
c = null;
a = aNodes.pop();
b = bNodes.pop();
while (a === b) {
c = a;
a = aNodes.pop();
b = bNodes.pop();
}
return c;
}
function node_ancestors() {
var node = this, nodes = [node];
while (node = node.parent) {
nodes.push(node);
}
return nodes;
}
function node_descendants() {
return Array.from(this);
}
function node_leaves() {
var leaves = [];
this.eachBefore(function(node) {
if (!node.children) {
leaves.push(node);
}
});
return leaves;
}
function node_links() {
var root = this, links = [];
root.each(function(node) {
if (node !== root) { // Dont include the roots parent, if any.
links.push({source: node.parent, target: node});
}
});
return links;
}
function* node_iterator() {
var node = this, current, next = [node], children, i, n;
do {
current = next.reverse(), next = [];
while (node = current.pop()) {
yield node;
if (children = node.children) {
for (i = 0, n = children.length; i < n; ++i) {
next.push(children[i]);
}
}
}
} while (next.length);
}
function hierarchy(data, children) {
if (data instanceof Map) {
data = [undefined, data];
if (children === undefined) children = mapChildren;
} else if (children === undefined) {
children = objectChildren;
}
var root = new Node$1(data),
node,
nodes = [root],
child,
childs,
i,
n;
while (node = nodes.pop()) {
if ((childs = children(node.data)) && (n = (childs = Array.from(childs)).length)) {
node.children = childs;
for (i = n - 1; i >= 0; --i) {
nodes.push(child = childs[i] = new Node$1(childs[i]));
child.parent = node;
child.depth = node.depth + 1;
}
}
}
return root.eachBefore(computeHeight);
}
function node_copy() {
return hierarchy(this).eachBefore(copyData);
}
function objectChildren(d) {
return d.children;
}
function mapChildren(d) {
return Array.isArray(d) ? d[1] : null;
}
function copyData(node) {
if (node.data.value !== undefined) node.value = node.data.value;
node.data = node.data.data;
}
function computeHeight(node) {
var height = 0;
do node.height = height;
while ((node = node.parent) && (node.height < ++height));
}
function Node$1(data) {
this.data = data;
this.depth =
this.height = 0;
this.parent = null;
}
Node$1.prototype = hierarchy.prototype = {
constructor: Node$1,
count: node_count,
each: node_each,
eachAfter: node_eachAfter,
eachBefore: node_eachBefore,
find: node_find,
sum: node_sum,
sort: node_sort,
path: node_path,
ancestors: node_ancestors,
descendants: node_descendants,
leaves: node_leaves,
links: node_links,
copy: node_copy,
[Symbol.iterator]: node_iterator
};
function optional(f) {
return f == null ? null : required(f);
}
function required(f) {
if (typeof f !== "function") throw new Error;
return f;
}
function constantZero() {
return 0;
}
function constant$2(x) {
return function() {
return x;
};
}
// https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
const a$1 = 1664525;
const c$3 = 1013904223;
const m = 4294967296; // 2^32
function lcg$1() {
let s = 1;
return () => (s = (a$1 * s + c$3) % m) / m;
}
function array$1(x) {
return typeof x === "object" && "length" in x
? x // Array, TypedArray, NodeList, array-like
: Array.from(x); // Map, Set, iterable, string, or anything else
}
function shuffle(array, random) {
let m = array.length,
t,
i;
while (m) {
i = random() * m-- | 0;
t = array[m];
array[m] = array[i];
array[i] = t;
}
return array;
}
function enclose(circles) {
return packEncloseRandom(circles, lcg$1());
}
function packEncloseRandom(circles, random) {
var i = 0, n = (circles = shuffle(Array.from(circles), random)).length, B = [], p, e;
while (i < n) {
p = circles[i];
if (e && enclosesWeak(e, p)) ++i;
else e = encloseBasis(B = extendBasis(B, p)), i = 0;
}
return e;
}
function extendBasis(B, p) {
var i, j;
if (enclosesWeakAll(p, B)) return [p];
// If we get here then B must have at least one element.
for (i = 0; i < B.length; ++i) {
if (enclosesNot(p, B[i])
&& enclosesWeakAll(encloseBasis2(B[i], p), B)) {
return [B[i], p];
}
}
// If we get here then B must have at least two elements.
for (i = 0; i < B.length - 1; ++i) {
for (j = i + 1; j < B.length; ++j) {
if (enclosesNot(encloseBasis2(B[i], B[j]), p)
&& enclosesNot(encloseBasis2(B[i], p), B[j])
&& enclosesNot(encloseBasis2(B[j], p), B[i])
&& enclosesWeakAll(encloseBasis3(B[i], B[j], p), B)) {
return [B[i], B[j], p];
}
}
}
// If we get here then something is very wrong.
throw new Error;
}
function enclosesNot(a, b) {
var dr = a.r - b.r, dx = b.x - a.x, dy = b.y - a.y;
return dr < 0 || dr * dr < dx * dx + dy * dy;
}
function enclosesWeak(a, b) {
var dr = a.r - b.r + Math.max(a.r, b.r, 1) * 1e-9, dx = b.x - a.x, dy = b.y - a.y;
return dr > 0 && dr * dr > dx * dx + dy * dy;
}
function enclosesWeakAll(a, B) {
for (var i = 0; i < B.length; ++i) {
if (!enclosesWeak(a, B[i])) {
return false;
}
}
return true;
}
function encloseBasis(B) {
switch (B.length) {
case 1: return encloseBasis1(B[0]);
case 2: return encloseBasis2(B[0], B[1]);
case 3: return encloseBasis3(B[0], B[1], B[2]);
}
}
function encloseBasis1(a) {
return {
x: a.x,
y: a.y,
r: a.r
};
}
function encloseBasis2(a, b) {
var x1 = a.x, y1 = a.y, r1 = a.r,
x2 = b.x, y2 = b.y, r2 = b.r,
x21 = x2 - x1, y21 = y2 - y1, r21 = r2 - r1,
l = Math.sqrt(x21 * x21 + y21 * y21);
return {
x: (x1 + x2 + x21 / l * r21) / 2,
y: (y1 + y2 + y21 / l * r21) / 2,
r: (l + r1 + r2) / 2
};
}
function encloseBasis3(a, b, c) {
var x1 = a.x, y1 = a.y, r1 = a.r,
x2 = b.x, y2 = b.y, r2 = b.r,
x3 = c.x, y3 = c.y, r3 = c.r,
a2 = x1 - x2,
a3 = x1 - x3,
b2 = y1 - y2,
b3 = y1 - y3,
c2 = r2 - r1,
c3 = r3 - r1,
d1 = x1 * x1 + y1 * y1 - r1 * r1,
d2 = d1 - x2 * x2 - y2 * y2 + r2 * r2,
d3 = d1 - x3 * x3 - y3 * y3 + r3 * r3,
ab = a3 * b2 - a2 * b3,
xa = (b2 * d3 - b3 * d2) / (ab * 2) - x1,
xb = (b3 * c2 - b2 * c3) / ab,
ya = (a3 * d2 - a2 * d3) / (ab * 2) - y1,
yb = (a2 * c3 - a3 * c2) / ab,
A = xb * xb + yb * yb - 1,
B = 2 * (r1 + xa * xb + ya * yb),
C = xa * xa + ya * ya - r1 * r1,
r = -(Math.abs(A) > 1e-6 ? (B + Math.sqrt(B * B - 4 * A * C)) / (2 * A) : C / B);
return {
x: x1 + xa + xb * r,
y: y1 + ya + yb * r,
r: r
};
}
function place(b, a, c) {
var dx = b.x - a.x, x, a2,
dy = b.y - a.y, y, b2,
d2 = dx * dx + dy * dy;
if (d2) {
a2 = a.r + c.r, a2 *= a2;
b2 = b.r + c.r, b2 *= b2;
if (a2 > b2) {
x = (d2 + b2 - a2) / (2 * d2);
y = Math.sqrt(Math.max(0, b2 / d2 - x * x));
c.x = b.x - x * dx - y * dy;
c.y = b.y - x * dy + y * dx;
} else {
x = (d2 + a2 - b2) / (2 * d2);
y = Math.sqrt(Math.max(0, a2 / d2 - x * x));
c.x = a.x + x * dx - y * dy;
c.y = a.y + x * dy + y * dx;
}
} else {
c.x = a.x + c.r;
c.y = a.y;
}
}
function intersects(a, b) {
var dr = a.r + b.r - 1e-6, dx = b.x - a.x, dy = b.y - a.y;
return dr > 0 && dr * dr > dx * dx + dy * dy;
}
function score(node) {
var a = node._,
b = node.next._,
ab = a.r + b.r,
dx = (a.x * b.r + b.x * a.r) / ab,
dy = (a.y * b.r + b.y * a.r) / ab;
return dx * dx + dy * dy;
}
function Node(circle) {
this._ = circle;
this.next = null;
this.previous = null;
}
function packSiblingsRandom(circles, random) {
if (!(n = (circles = array$1(circles)).length)) return 0;
var a, b, c, n, aa, ca, i, j, k, sj, sk;
// Place the first circle.
a = circles[0], a.x = 0, a.y = 0;
if (!(n > 1)) return a.r;
// Place the second circle.
b = circles[1], a.x = -b.r, b.x = a.r, b.y = 0;
if (!(n > 2)) return a.r + b.r;
// Place the third circle.
place(b, a, c = circles[2]);
// Initialize the front-chain using the first three circles a, b and c.
a = new Node(a), b = new Node(b), c = new Node(c);
a.next = c.previous = b;
b.next = a.previous = c;
c.next = b.previous = a;
// Attempt to place each remaining circle…
pack: for (i = 3; i < n; ++i) {
place(a._, b._, c = circles[i]), c = new Node(c);
// Find the closest intersecting circle on the front-chain, if any.
// “Closeness” is determined by linear distance along the front-chain.
// “Ahead” or “behind” is likewise determined by linear distance.
j = b.next, k = a.previous, sj = b._.r, sk = a._.r;
do {
if (sj <= sk) {
if (intersects(j._, c._)) {
b = j, a.next = b, b.previous = a, --i;
continue pack;
}
sj += j._.r, j = j.next;
} else {
if (intersects(k._, c._)) {
a = k, a.next = b, b.previous = a, --i;
continue pack;
}
sk += k._.r, k = k.previous;
}
} while (j !== k.next);
// Success! Insert the new circle c between a and b.
c.previous = a, c.next = b, a.next = b.previous = b = c;
// Compute the new closest circle pair to the centroid.
aa = score(a);
while ((c = c.next) !== b) {
if ((ca = score(c)) < aa) {
a = c, aa = ca;
}
}
b = a.next;
}
// Compute the enclosing circle of the front chain.
a = [b._], c = b; while ((c = c.next) !== b) a.push(c._); c = packEncloseRandom(a, random);
// Translate the circles to put the enclosing circle around the origin.
for (i = 0; i < n; ++i) a = circles[i], a.x -= c.x, a.y -= c.y;
return c.r;
}
function siblings(circles) {
packSiblingsRandom(circles, lcg$1());
return circles;
}
function defaultRadius(d) {
return Math.sqrt(d.value);
}
function index$1() {
var radius = null,
dx = 1,
dy = 1,
padding = constantZero;
function pack(root) {
const random = lcg$1();
root.x = dx / 2, root.y = dy / 2;
if (radius) {
root.eachBefore(radiusLeaf(radius))
.eachAfter(packChildrenRandom(padding, 0.5, random))
.eachBefore(translateChild(1));
} else {
root.eachBefore(radiusLeaf(defaultRadius))
.eachAfter(packChildrenRandom(constantZero, 1, random))
.eachAfter(packChildrenRandom(padding, root.r / Math.min(dx, dy), random))
.eachBefore(translateChild(Math.min(dx, dy) / (2 * root.r)));
}
return root;
}
pack.radius = function(x) {
return arguments.length ? (radius = optional(x), pack) : radius;
};
pack.size = function(x) {
return arguments.length ? (dx = +x[0], dy = +x[1], pack) : [dx, dy];
};
pack.padding = function(x) {
return arguments.length ? (padding = typeof x === "function" ? x : constant$2(+x), pack) : padding;
};
return pack;
}
function radiusLeaf(radius) {
return function(node) {
if (!node.children) {
node.r = Math.max(0, +radius(node) || 0);
}
};
}
function packChildrenRandom(padding, k, random) {
return function(node) {
if (children = node.children) {
var children,
i,
n = children.length,
r = padding(node) * k || 0,
e;
if (r) for (i = 0; i < n; ++i) children[i].r += r;
e = packSiblingsRandom(children, random);
if (r) for (i = 0; i < n; ++i) children[i].r -= r;
node.r = e + r;
}
};
}
function translateChild(k) {
return function(node) {
var parent = node.parent;
node.r *= k;
if (parent) {
node.x = parent.x + k * node.x;
node.y = parent.y + k * node.y;
}
};
}
function roundNode(node) {
node.x0 = Math.round(node.x0);
node.y0 = Math.round(node.y0);
node.x1 = Math.round(node.x1);
node.y1 = Math.round(node.y1);
}
function treemapDice(parent, x0, y0, x1, y1) {
var nodes = parent.children,
node,
i = -1,
n = nodes.length,
k = parent.value && (x1 - x0) / parent.value;
while (++i < n) {
node = nodes[i], node.y0 = y0, node.y1 = y1;
node.x0 = x0, node.x1 = x0 += node.value * k;
}
}
function partition() {
var dx = 1,
dy = 1,
padding = 0,
round = false;
function partition(root) {
var n = root.height + 1;
root.x0 =
root.y0 = padding;
root.x1 = dx;
root.y1 = dy / n;
root.eachBefore(positionNode(dy, n));
if (round) root.eachBefore(roundNode);
return root;
}
function positionNode(dy, n) {
return function(node) {
if (node.children) {
treemapDice(node, node.x0, dy * (node.depth + 1) / n, node.x1, dy * (node.depth + 2) / n);
}
var x0 = node.x0,
y0 = node.y0,
x1 = node.x1 - padding,
y1 = node.y1 - padding;
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
node.x0 = x0;
node.y0 = y0;
node.x1 = x1;
node.y1 = y1;
};
}
partition.round = function(x) {
return arguments.length ? (round = !!x, partition) : round;
};
partition.size = function(x) {
return arguments.length ? (dx = +x[0], dy = +x[1], partition) : [dx, dy];
};
partition.padding = function(x) {
return arguments.length ? (padding = +x, partition) : padding;
};
return partition;
}
var preroot = {depth: -1},
ambiguous = {},
imputed = {};
function defaultId(d) {
return d.id;
}
function defaultParentId(d) {
return d.parentId;
}
function stratify() {
var id = defaultId,
parentId = defaultParentId,
path;
function stratify(data) {
var nodes = Array.from(data),
currentId = id,
currentParentId = parentId,
n,
d,
i,
root,
parent,
node,
nodeId,
nodeKey,
nodeByKey = new Map;
if (path != null) {
const I = nodes.map((d, i) => normalize$1(path(d, i, data)));
const P = I.map(parentof);
const S = new Set(I).add("");
for (const i of P) {
if (!S.has(i)) {
S.add(i);
I.push(i);
P.push(parentof(i));
nodes.push(imputed);
}
}
currentId = (_, i) => I[i];
currentParentId = (_, i) => P[i];
}
for (i = 0, n = nodes.length; i < n; ++i) {
d = nodes[i], node = nodes[i] = new Node$1(d);
if ((nodeId = currentId(d, i, data)) != null && (nodeId += "")) {
nodeKey = node.id = nodeId;
nodeByKey.set(nodeKey, nodeByKey.has(nodeKey) ? ambiguous : node);
}
if ((nodeId = currentParentId(d, i, data)) != null && (nodeId += "")) {
node.parent = nodeId;
}
}
for (i = 0; i < n; ++i) {
node = nodes[i];
if (nodeId = node.parent) {
parent = nodeByKey.get(nodeId);
if (!parent) throw new Error("missing: " + nodeId);
if (parent === ambiguous) throw new Error("ambiguous: " + nodeId);
if (parent.children) parent.children.push(node);
else parent.children = [node];
node.parent = parent;
} else {
if (root) throw new Error("multiple roots");
root = node;
}
}
if (!root) throw new Error("no root");
// When imputing internal nodes, only introduce roots if needed.
// Then replace the imputed marker data with null.
if (path != null) {
while (root.data === imputed && root.children.length === 1) {
root = root.children[0], --n;
}
for (let i = nodes.length - 1; i >= 0; --i) {
node = nodes[i];
if (node.data !== imputed) break;
node.data = null;
}
}
root.parent = preroot;
root.eachBefore(function(node) { node.depth = node.parent.depth + 1; --n; }).eachBefore(computeHeight);
root.parent = null;
if (n > 0) throw new Error("cycle");
return root;
}
stratify.id = function(x) {
return arguments.length ? (id = optional(x), stratify) : id;
};
stratify.parentId = function(x) {
return arguments.length ? (parentId = optional(x), stratify) : parentId;
};
stratify.path = function(x) {
return arguments.length ? (path = optional(x), stratify) : path;
};
return stratify;
}
// To normalize a path, we coerce to a string, strip the trailing slash if any
// (as long as the trailing slash is not immediately preceded by another slash),
// and add leading slash if missing.
function normalize$1(path) {
path = `${path}`;
let i = path.length;
if (slash(path, i - 1) && !slash(path, i - 2)) path = path.slice(0, -1);
return path[0] === "/" ? path : `/${path}`;
}
// Walk backwards to find the first slash that is not the leading slash, e.g.:
// "/foo/bar" ⇥ "/foo", "/foo" ⇥ "/", "/" ↦ "". (The root is special-cased
// because the id of the root must be a truthy value.)
function parentof(path) {
let i = path.length;
if (i < 2) return "";
while (--i > 1) if (slash(path, i)) break;
return path.slice(0, i);
}
// Slashes can be escaped; to determine whether a slash is a path delimiter, we
// count the number of preceding backslashes escaping the forward slash: an odd
// number indicates an escaped forward slash.
function slash(path, i) {
if (path[i] === "/") {
let k = 0;
while (i > 0 && path[--i] === "\\") ++k;
if ((k & 1) === 0) return true;
}
return false;
}
function defaultSeparation(a, b) {
return a.parent === b.parent ? 1 : 2;
}
// function radialSeparation(a, b) {
// return (a.parent === b.parent ? 1 : 2) / a.depth;
// }
// This function is used to traverse the left contour of a subtree (or
// subforest). It returns the successor of v on this contour. This successor is
// either given by the leftmost child of v or by the thread of v. The function
// returns null if and only if v is on the highest level of its subtree.
function nextLeft(v) {
var children = v.children;
return children ? children[0] : v.t;
}
// This function works analogously to nextLeft.
function nextRight(v) {
var children = v.children;
return children ? children[children.length - 1] : v.t;
}
// Shifts the current subtree rooted at w+. This is done by increasing
// prelim(w+) and mod(w+) by shift.
function moveSubtree(wm, wp, shift) {
var change = shift / (wp.i - wm.i);
wp.c -= change;
wp.s += shift;
wm.c += change;
wp.z += shift;
wp.m += shift;
}
// All other shifts, applied to the smaller subtrees between w- and w+, are
// performed by this function. To prepare the shifts, we have to adjust
// change(w+), shift(w+), and change(w-).
function executeShifts(v) {
var shift = 0,
change = 0,
children = v.children,
i = children.length,
w;
while (--i >= 0) {
w = children[i];
w.z += shift;
w.m += shift;
shift += w.s + (change += w.c);
}
}
// If vi-s ancestor is a sibling of v, returns vi-s ancestor. Otherwise,
// returns the specified (default) ancestor.
function nextAncestor(vim, v, ancestor) {
return vim.a.parent === v.parent ? vim.a : ancestor;
}
function TreeNode(node, i) {
this._ = node;
this.parent = null;
this.children = null;
this.A = null; // default ancestor
this.a = this; // ancestor
this.z = 0; // prelim
this.m = 0; // mod
this.c = 0; // change
this.s = 0; // shift
this.t = null; // thread
this.i = i; // number
}
TreeNode.prototype = Object.create(Node$1.prototype);
function treeRoot(root) {
var tree = new TreeNode(root, 0),
node,
nodes = [tree],
child,
children,
i,
n;
while (node = nodes.pop()) {
if (children = node._.children) {
node.children = new Array(n = children.length);
for (i = n - 1; i >= 0; --i) {
nodes.push(child = node.children[i] = new TreeNode(children[i], i));
child.parent = node;
}
}
}
(tree.parent = new TreeNode(null, 0)).children = [tree];
return tree;
}
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
function tree() {
var separation = defaultSeparation,
dx = 1,
dy = 1,
nodeSize = null;
function tree(root) {
var t = treeRoot(root);
// Compute the layout using Buchheim et al.s algorithm.
t.eachAfter(firstWalk), t.parent.m = -t.z;
t.eachBefore(secondWalk);
// If a fixed node size is specified, scale x and y.
if (nodeSize) root.eachBefore(sizeNode);
// If a fixed tree size is specified, scale x and y based on the extent.
// Compute the left-most, right-most, and depth-most nodes for extents.
else {
var left = root,
right = root,
bottom = root;
root.eachBefore(function(node) {
if (node.x < left.x) left = node;
if (node.x > right.x) right = node;
if (node.depth > bottom.depth) bottom = node;
});
var s = left === right ? 1 : separation(left, right) / 2,
tx = s - left.x,
kx = dx / (right.x + s + tx),
ky = dy / (bottom.depth || 1);
root.eachBefore(function(node) {
node.x = (node.x + tx) * kx;
node.y = node.depth * ky;
});
}
return root;
}
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
// applied recursively to the children of v, as well as the function
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
// node v is placed to the midpoint of its outermost children.
function firstWalk(v) {
var children = v.children,
siblings = v.parent.children,
w = v.i ? siblings[v.i - 1] : null;
if (children) {
executeShifts(v);
var midpoint = (children[0].z + children[children.length - 1].z) / 2;
if (w) {
v.z = w.z + separation(v._, w._);
v.m = v.z - midpoint;
} else {
v.z = midpoint;
}
} else if (w) {
v.z = w.z + separation(v._, w._);
}
v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
}
// Computes all real x-coordinates by summing up the modifiers recursively.
function secondWalk(v) {
v._.x = v.z + v.parent.m;
v.m += v.parent.m;
}
// The core of the algorithm. Here, a new subtree is combined with the
// previous subtrees. Threads are used to traverse the inside and outside
// contours of the left and right subtree up to the highest common level. The
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
// superscript o means outside and i means inside, the subscript - means left
// subtree and + means right subtree. For summing up the modifiers along the
// contour, we use respective variables si+, si-, so-, and so+. Whenever two
// nodes of the inside contours conflict, we compute the left one of the
// greatest uncommon ancestors using the function ANCESTOR and call MOVE
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
// Finally, we add a new thread (if necessary).
function apportion(v, w, ancestor) {
if (w) {
var vip = v,
vop = v,
vim = w,
vom = vip.parent.children[0],
sip = vip.m,
sop = vop.m,
sim = vim.m,
som = vom.m,
shift;
while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) {
vom = nextLeft(vom);
vop = nextRight(vop);
vop.a = v;
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
if (shift > 0) {
moveSubtree(nextAncestor(vim, v, ancestor), v, shift);
sip += shift;
sop += shift;
}
sim += vim.m;
sip += vip.m;
som += vom.m;
sop += vop.m;
}
if (vim && !nextRight(vop)) {
vop.t = vim;
vop.m += sim - sop;
}
if (vip && !nextLeft(vom)) {
vom.t = vip;
vom.m += sip - som;
ancestor = v;
}
}
return ancestor;
}
function sizeNode(node) {
node.x *= dx;
node.y = node.depth * dy;
}
tree.separation = function(x) {
return arguments.length ? (separation = x, tree) : separation;
};
tree.size = function(x) {
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]);
};
tree.nodeSize = function(x) {
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null);
};
return tree;
}
function treemapSlice(parent, x0, y0, x1, y1) {
var nodes = parent.children,
node,
i = -1,
n = nodes.length,
k = parent.value && (y1 - y0) / parent.value;
while (++i < n) {
node = nodes[i], node.x0 = x0, node.x1 = x1;
node.y0 = y0, node.y1 = y0 += node.value * k;
}
}
var phi = (1 + Math.sqrt(5)) / 2;
function squarifyRatio(ratio, parent, x0, y0, x1, y1) {
var rows = [],
nodes = parent.children,
row,
nodeValue,
i0 = 0,
i1 = 0,
n = nodes.length,
dx, dy,
value = parent.value,
sumValue,
minValue,
maxValue,
newRatio,
minRatio,
alpha,
beta;
while (i0 < n) {
dx = x1 - x0, dy = y1 - y0;
// Find the next non-empty node.
do sumValue = nodes[i1++].value; while (!sumValue && i1 < n);
minValue = maxValue = sumValue;
alpha = Math.max(dy / dx, dx / dy) / (value * ratio);
beta = sumValue * sumValue * alpha;
minRatio = Math.max(maxValue / beta, beta / minValue);
// Keep adding nodes while the aspect ratio maintains or improves.
for (; i1 < n; ++i1) {
sumValue += nodeValue = nodes[i1].value;
if (nodeValue < minValue) minValue = nodeValue;
if (nodeValue > maxValue) maxValue = nodeValue;
beta = sumValue * sumValue * alpha;
newRatio = Math.max(maxValue / beta, beta / minValue);
if (newRatio > minRatio) { sumValue -= nodeValue; break; }
minRatio = newRatio;
}
// Position and record the row orientation.
rows.push(row = {value: sumValue, dice: dx < dy, children: nodes.slice(i0, i1)});
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += dy * sumValue / value : y1);
else treemapSlice(row, x0, y0, value ? x0 += dx * sumValue / value : x1, y1);
value -= sumValue, i0 = i1;
}
return rows;
}
var squarify = (function custom(ratio) {
function squarify(parent, x0, y0, x1, y1) {
squarifyRatio(ratio, parent, x0, y0, x1, y1);
}
squarify.ratio = function(x) {
return custom((x = +x) > 1 ? x : 1);
};
return squarify;
})(phi);
function index() {
var tile = squarify,
round = false,
dx = 1,
dy = 1,
paddingStack = [0],
paddingInner = constantZero,
paddingTop = constantZero,
paddingRight = constantZero,
paddingBottom = constantZero,
paddingLeft = constantZero;
function treemap(root) {
root.x0 =
root.y0 = 0;
root.x1 = dx;
root.y1 = dy;
root.eachBefore(positionNode);
paddingStack = [0];
if (round) root.eachBefore(roundNode);
return root;
}
function positionNode(node) {
var p = paddingStack[node.depth],
x0 = node.x0 + p,
y0 = node.y0 + p,
x1 = node.x1 - p,
y1 = node.y1 - p;
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
node.x0 = x0;
node.y0 = y0;
node.x1 = x1;
node.y1 = y1;
if (node.children) {
p = paddingStack[node.depth + 1] = paddingInner(node) / 2;
x0 += paddingLeft(node) - p;
y0 += paddingTop(node) - p;
x1 -= paddingRight(node) - p;
y1 -= paddingBottom(node) - p;
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
tile(node, x0, y0, x1, y1);
}
}
treemap.round = function(x) {
return arguments.length ? (round = !!x, treemap) : round;
};
treemap.size = function(x) {
return arguments.length ? (dx = +x[0], dy = +x[1], treemap) : [dx, dy];
};
treemap.tile = function(x) {
return arguments.length ? (tile = required(x), treemap) : tile;
};
treemap.padding = function(x) {
return arguments.length ? treemap.paddingInner(x).paddingOuter(x) : treemap.paddingInner();
};
treemap.paddingInner = function(x) {
return arguments.length ? (paddingInner = typeof x === "function" ? x : constant$2(+x), treemap) : paddingInner;
};
treemap.paddingOuter = function(x) {
return arguments.length ? treemap.paddingTop(x).paddingRight(x).paddingBottom(x).paddingLeft(x) : treemap.paddingTop();
};
treemap.paddingTop = function(x) {
return arguments.length ? (paddingTop = typeof x === "function" ? x : constant$2(+x), treemap) : paddingTop;
};
treemap.paddingRight = function(x) {
return arguments.length ? (paddingRight = typeof x === "function" ? x : constant$2(+x), treemap) : paddingRight;
};
treemap.paddingBottom = function(x) {
return arguments.length ? (paddingBottom = typeof x === "function" ? x : constant$2(+x), treemap) : paddingBottom;
};
treemap.paddingLeft = function(x) {
return arguments.length ? (paddingLeft = typeof x === "function" ? x : constant$2(+x), treemap) : paddingLeft;
};
return treemap;
}
function binary(parent, x0, y0, x1, y1) {
var nodes = parent.children,
i, n = nodes.length,
sum, sums = new Array(n + 1);
for (sums[0] = sum = i = 0; i < n; ++i) {
sums[i + 1] = sum += nodes[i].value;
}
partition(0, n, parent.value, x0, y0, x1, y1);
function partition(i, j, value, x0, y0, x1, y1) {
if (i >= j - 1) {
var node = nodes[i];
node.x0 = x0, node.y0 = y0;
node.x1 = x1, node.y1 = y1;
return;
}
var valueOffset = sums[i],
valueTarget = (value / 2) + valueOffset,
k = i + 1,
hi = j - 1;
while (k < hi) {
var mid = k + hi >>> 1;
if (sums[mid] < valueTarget) k = mid + 1;
else hi = mid;
}
if ((valueTarget - sums[k - 1]) < (sums[k] - valueTarget) && i + 1 < k) --k;
var valueLeft = sums[k] - valueOffset,
valueRight = value - valueLeft;
if ((x1 - x0) > (y1 - y0)) {
var xk = value ? (x0 * valueRight + x1 * valueLeft) / value : x1;
partition(i, k, valueLeft, x0, y0, xk, y1);
partition(k, j, valueRight, xk, y0, x1, y1);
} else {
var yk = value ? (y0 * valueRight + y1 * valueLeft) / value : y1;
partition(i, k, valueLeft, x0, y0, x1, yk);
partition(k, j, valueRight, x0, yk, x1, y1);
}
}
}
function sliceDice(parent, x0, y0, x1, y1) {
(parent.depth & 1 ? treemapSlice : treemapDice)(parent, x0, y0, x1, y1);
}
var resquarify = (function custom(ratio) {
function resquarify(parent, x0, y0, x1, y1) {
if ((rows = parent._squarify) && (rows.ratio === ratio)) {
var rows,
row,
nodes,
i,
j = -1,
n,
m = rows.length,
value = parent.value;
while (++j < m) {
row = rows[j], nodes = row.children;
for (i = row.value = 0, n = nodes.length; i < n; ++i) row.value += nodes[i].value;
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += (y1 - y0) * row.value / value : y1);
else treemapSlice(row, x0, y0, value ? x0 += (x1 - x0) * row.value / value : x1, y1);
value -= row.value;
}
} else {
parent._squarify = rows = squarifyRatio(ratio, parent, x0, y0, x1, y1);
rows.ratio = ratio;
}
}
resquarify.ratio = function(x) {
return custom((x = +x) > 1 ? x : 1);
};
return resquarify;
})(phi);
function area$1(polygon) {
var i = -1,
n = polygon.length,
a,
b = polygon[n - 1],
area = 0;
while (++i < n) {
a = b;
b = polygon[i];
area += a[1] * b[0] - a[0] * b[1];
}
return area / 2;
}
function centroid(polygon) {
var i = -1,
n = polygon.length,
x = 0,
y = 0,
a,
b = polygon[n - 1],
c,
k = 0;
while (++i < n) {
a = b;
b = polygon[i];
k += c = a[0] * b[1] - b[0] * a[1];
x += (a[0] + b[0]) * c;
y += (a[1] + b[1]) * c;
}
return k *= 3, [x / k, y / k];
}
// Returns the 2D cross product of AB and AC vectors, i.e., the z-component of
// the 3D cross product in a quadrant I Cartesian coordinate system (+x is
// right, +y is up). Returns a positive value if ABC is counter-clockwise,
// negative if clockwise, and zero if the points are collinear.
function cross$1(a, b, c) {
return (b[0] - a[0]) * (c[1] - a[1]) - (b[1] - a[1]) * (c[0] - a[0]);
}
function lexicographicOrder(a, b) {
return a[0] - b[0] || a[1] - b[1];
}
// Computes the upper convex hull per the monotone chain algorithm.
// Assumes points.length >= 3, is sorted by x, unique in y.
// Returns an array of indices into points in left-to-right order.
function computeUpperHullIndexes(points) {
const n = points.length,
indexes = [0, 1];
let size = 2, i;
for (i = 2; i < n; ++i) {
while (size > 1 && cross$1(points[indexes[size - 2]], points[indexes[size - 1]], points[i]) <= 0) --size;
indexes[size++] = i;
}
return indexes.slice(0, size); // remove popped points
}
function hull(points) {
if ((n = points.length) < 3) return null;
var i,
n,
sortedPoints = new Array(n),
flippedPoints = new Array(n);
for (i = 0; i < n; ++i) sortedPoints[i] = [+points[i][0], +points[i][1], i];
sortedPoints.sort(lexicographicOrder);
for (i = 0; i < n; ++i) flippedPoints[i] = [sortedPoints[i][0], -sortedPoints[i][1]];
var upperIndexes = computeUpperHullIndexes(sortedPoints),
lowerIndexes = computeUpperHullIndexes(flippedPoints);
// Construct the hull polygon, removing possible duplicate endpoints.
var skipLeft = lowerIndexes[0] === upperIndexes[0],
skipRight = lowerIndexes[lowerIndexes.length - 1] === upperIndexes[upperIndexes.length - 1],
hull = [];
// Add upper hull in right-to-l order.
// Then add lower hull in left-to-right order.
for (i = upperIndexes.length - 1; i >= 0; --i) hull.push(points[sortedPoints[upperIndexes[i]][2]]);
for (i = +skipLeft; i < lowerIndexes.length - skipRight; ++i) hull.push(points[sortedPoints[lowerIndexes[i]][2]]);
return hull;
}
function contains(polygon, point) {
var n = polygon.length,
p = polygon[n - 1],
x = point[0], y = point[1],
x0 = p[0], y0 = p[1],
x1, y1,
inside = false;
for (var i = 0; i < n; ++i) {
p = polygon[i], x1 = p[0], y1 = p[1];
if (((y1 > y) !== (y0 > y)) && (x < (x0 - x1) * (y - y1) / (y0 - y1) + x1)) inside = !inside;
x0 = x1, y0 = y1;
}
return inside;
}
function length(polygon) {
var i = -1,
n = polygon.length,
b = polygon[n - 1],
xa,
ya,
xb = b[0],
yb = b[1],
perimeter = 0;
while (++i < n) {
xa = xb;
ya = yb;
b = polygon[i];
xb = b[0];
yb = b[1];
xa -= xb;
ya -= yb;
perimeter += Math.hypot(xa, ya);
}
return perimeter;
}
var defaultSource = Math.random;
var uniform = (function sourceRandomUniform(source) {
function randomUniform(min, max) {
min = min == null ? 0 : +min;
max = max == null ? 1 : +max;
if (arguments.length === 1) max = min, min = 0;
else max -= min;
return function() {
return source() * max + min;
};
}
randomUniform.source = sourceRandomUniform;
return randomUniform;
})(defaultSource);
var int = (function sourceRandomInt(source) {
function randomInt(min, max) {
if (arguments.length < 2) max = min, min = 0;
min = Math.floor(min);
max = Math.floor(max) - min;
return function() {
return Math.floor(source() * max + min);
};
}
randomInt.source = sourceRandomInt;
return randomInt;
})(defaultSource);
var normal = (function sourceRandomNormal(source) {
function randomNormal(mu, sigma) {
var x, r;
mu = mu == null ? 0 : +mu;
sigma = sigma == null ? 1 : +sigma;
return function() {
var y;
// If available, use the second previously-generated uniform random.
if (x != null) y = x, x = null;
// Otherwise, generate a new x and y.
else do {
x = source() * 2 - 1;
y = source() * 2 - 1;
r = x * x + y * y;
} while (!r || r > 1);
return mu + sigma * y * Math.sqrt(-2 * Math.log(r) / r);
};
}
randomNormal.source = sourceRandomNormal;
return randomNormal;
})(defaultSource);
var logNormal = (function sourceRandomLogNormal(source) {
var N = normal.source(source);
function randomLogNormal() {
var randomNormal = N.apply(this, arguments);
return function() {
return Math.exp(randomNormal());
};
}
randomLogNormal.source = sourceRandomLogNormal;
return randomLogNormal;
})(defaultSource);
var irwinHall = (function sourceRandomIrwinHall(source) {
function randomIrwinHall(n) {
if ((n = +n) <= 0) return () => 0;
return function() {
for (var sum = 0, i = n; i > 1; --i) sum += source();
return sum + i * source();
};
}
randomIrwinHall.source = sourceRandomIrwinHall;
return randomIrwinHall;
})(defaultSource);
var bates = (function sourceRandomBates(source) {
var I = irwinHall.source(source);
function randomBates(n) {
// use limiting distribution at n === 0
if ((n = +n) === 0) return source;
var randomIrwinHall = I(n);
return function() {
return randomIrwinHall() / n;
};
}
randomBates.source = sourceRandomBates;
return randomBates;
})(defaultSource);
var exponential = (function sourceRandomExponential(source) {
function randomExponential(lambda) {
return function() {
return -Math.log1p(-source()) / lambda;
};
}
randomExponential.source = sourceRandomExponential;
return randomExponential;
})(defaultSource);
var pareto = (function sourceRandomPareto(source) {
function randomPareto(alpha) {
if ((alpha = +alpha) < 0) throw new RangeError("invalid alpha");
alpha = 1 / -alpha;
return function() {
return Math.pow(1 - source(), alpha);
};
}
randomPareto.source = sourceRandomPareto;
return randomPareto;
})(defaultSource);
var bernoulli = (function sourceRandomBernoulli(source) {
function randomBernoulli(p) {
if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p");
return function() {
return Math.floor(source() + p);
};
}
randomBernoulli.source = sourceRandomBernoulli;
return randomBernoulli;
})(defaultSource);
var geometric = (function sourceRandomGeometric(source) {
function randomGeometric(p) {
if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p");
if (p === 0) return () => Infinity;
if (p === 1) return () => 1;
p = Math.log1p(-p);
return function() {
return 1 + Math.floor(Math.log1p(-source()) / p);
};
}
randomGeometric.source = sourceRandomGeometric;
return randomGeometric;
})(defaultSource);
var gamma = (function sourceRandomGamma(source) {
var randomNormal = normal.source(source)();
function randomGamma(k, theta) {
if ((k = +k) < 0) throw new RangeError("invalid k");
// degenerate distribution if k === 0
if (k === 0) return () => 0;
theta = theta == null ? 1 : +theta;
// exponential distribution if k === 1
if (k === 1) return () => -Math.log1p(-source()) * theta;
var d = (k < 1 ? k + 1 : k) - 1 / 3,
c = 1 / (3 * Math.sqrt(d)),
multiplier = k < 1 ? () => Math.pow(source(), 1 / k) : () => 1;
return function() {
do {
do {
var x = randomNormal(),
v = 1 + c * x;
} while (v <= 0);
v *= v * v;
var u = 1 - source();
} while (u >= 1 - 0.0331 * x * x * x * x && Math.log(u) >= 0.5 * x * x + d * (1 - v + Math.log(v)));
return d * v * multiplier() * theta;
};
}
randomGamma.source = sourceRandomGamma;
return randomGamma;
})(defaultSource);
var beta = (function sourceRandomBeta(source) {
var G = gamma.source(source);
function randomBeta(alpha, beta) {
var X = G(alpha),
Y = G(beta);
return function() {
var x = X();
return x === 0 ? 0 : x / (x + Y());
};
}
randomBeta.source = sourceRandomBeta;
return randomBeta;
})(defaultSource);
var binomial = (function sourceRandomBinomial(source) {
var G = geometric.source(source),
B = beta.source(source);
function randomBinomial(n, p) {
n = +n;
if ((p = +p) >= 1) return () => n;
if (p <= 0) return () => 0;
return function() {
var acc = 0, nn = n, pp = p;
while (nn * pp > 16 && nn * (1 - pp) > 16) {
var i = Math.floor((nn + 1) * pp),
y = B(i, nn - i + 1)();
if (y <= pp) {
acc += i;
nn -= i;
pp = (pp - y) / (1 - y);
} else {
nn = i - 1;
pp /= y;
}
}
var sign = pp < 0.5,
pFinal = sign ? pp : 1 - pp,
g = G(pFinal);
for (var s = g(), k = 0; s <= nn; ++k) s += g();
return acc + (sign ? k : nn - k);
};
}
randomBinomial.source = sourceRandomBinomial;
return randomBinomial;
})(defaultSource);
var weibull = (function sourceRandomWeibull(source) {
function randomWeibull(k, a, b) {
var outerFunc;
if ((k = +k) === 0) {
outerFunc = x => -Math.log(x);
} else {
k = 1 / k;
outerFunc = x => Math.pow(x, k);
}
a = a == null ? 0 : +a;
b = b == null ? 1 : +b;
return function() {
return a + b * outerFunc(-Math.log1p(-source()));
};
}
randomWeibull.source = sourceRandomWeibull;
return randomWeibull;
})(defaultSource);
var cauchy = (function sourceRandomCauchy(source) {
function randomCauchy(a, b) {
a = a == null ? 0 : +a;
b = b == null ? 1 : +b;
return function() {
return a + b * Math.tan(Math.PI * source());
};
}
randomCauchy.source = sourceRandomCauchy;
return randomCauchy;
})(defaultSource);
var logistic = (function sourceRandomLogistic(source) {
function randomLogistic(a, b) {
a = a == null ? 0 : +a;
b = b == null ? 1 : +b;
return function() {
var u = source();
return a + b * Math.log(u / (1 - u));
};
}
randomLogistic.source = sourceRandomLogistic;
return randomLogistic;
})(defaultSource);
var poisson = (function sourceRandomPoisson(source) {
var G = gamma.source(source),
B = binomial.source(source);
function randomPoisson(lambda) {
return function() {
var acc = 0, l = lambda;
while (l > 16) {
var n = Math.floor(0.875 * l),
t = G(n)();
if (t > l) return acc + B(n - 1, l / t)();
acc += n;
l -= t;
}
for (var s = -Math.log1p(-source()), k = 0; s <= l; ++k) s -= Math.log1p(-source());
return acc + k;
};
}
randomPoisson.source = sourceRandomPoisson;
return randomPoisson;
})(defaultSource);
// https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
const mul = 0x19660D;
const inc = 0x3C6EF35F;
const eps = 1 / 0x100000000;
function lcg(seed = Math.random()) {
let state = (0 <= seed && seed < 1 ? seed / eps : Math.abs(seed)) | 0;
return () => (state = mul * state + inc | 0, eps * (state >>> 0));
}
function initRange(domain, range) {
switch (arguments.length) {
case 0: break;
case 1: this.range(domain); break;
default: this.range(range).domain(domain); break;
}
return this;
}
function initInterpolator(domain, interpolator) {
switch (arguments.length) {
case 0: break;
case 1: {
if (typeof domain === "function") this.interpolator(domain);
else this.range(domain);
break;
}
default: {
this.domain(domain);
if (typeof interpolator === "function") this.interpolator(interpolator);
else this.range(interpolator);
break;
}
}
return this;
}
const implicit = Symbol("implicit");
function ordinal() {
var index = new InternMap(),
domain = [],
range = [],
unknown = implicit;
function scale(d) {
let i = index.get(d);
if (i === undefined) {
if (unknown !== implicit) return unknown;
index.set(d, i = domain.push(d) - 1);
}
return range[i % range.length];
}
scale.domain = function(_) {
if (!arguments.length) return domain.slice();
domain = [], index = new InternMap();
for (const value of _) {
if (index.has(value)) continue;
index.set(value, domain.push(value) - 1);
}
return scale;
};
scale.range = function(_) {
return arguments.length ? (range = Array.from(_), scale) : range.slice();
};
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
scale.copy = function() {
return ordinal(domain, range).unknown(unknown);
};
initRange.apply(scale, arguments);
return scale;
}
function band() {
var scale = ordinal().unknown(undefined),
domain = scale.domain,
ordinalRange = scale.range,
r0 = 0,
r1 = 1,
step,
bandwidth,
round = false,
paddingInner = 0,
paddingOuter = 0,
align = 0.5;
delete scale.unknown;
function rescale() {
var n = domain().length,
reverse = r1 < r0,
start = reverse ? r1 : r0,
stop = reverse ? r0 : r1;
step = (stop - start) / Math.max(1, n - paddingInner + paddingOuter * 2);
if (round) step = Math.floor(step);
start += (stop - start - step * (n - paddingInner)) * align;
bandwidth = step * (1 - paddingInner);
if (round) start = Math.round(start), bandwidth = Math.round(bandwidth);
var values = range$2(n).map(function(i) { return start + step * i; });
return ordinalRange(reverse ? values.reverse() : values);
}
scale.domain = function(_) {
return arguments.length ? (domain(_), rescale()) : domain();
};
scale.range = function(_) {
return arguments.length ? ([r0, r1] = _, r0 = +r0, r1 = +r1, rescale()) : [r0, r1];
};
scale.rangeRound = function(_) {
return [r0, r1] = _, r0 = +r0, r1 = +r1, round = true, rescale();
};
scale.bandwidth = function() {
return bandwidth;
};
scale.step = function() {
return step;
};
scale.round = function(_) {
return arguments.length ? (round = !!_, rescale()) : round;
};
scale.padding = function(_) {
return arguments.length ? (paddingInner = Math.min(1, paddingOuter = +_), rescale()) : paddingInner;
};
scale.paddingInner = function(_) {
return arguments.length ? (paddingInner = Math.min(1, _), rescale()) : paddingInner;
};
scale.paddingOuter = function(_) {
return arguments.length ? (paddingOuter = +_, rescale()) : paddingOuter;
};
scale.align = function(_) {
return arguments.length ? (align = Math.max(0, Math.min(1, _)), rescale()) : align;
};
scale.copy = function() {
return band(domain(), [r0, r1])
.round(round)
.paddingInner(paddingInner)
.paddingOuter(paddingOuter)
.align(align);
};
return initRange.apply(rescale(), arguments);
}
function pointish(scale) {
var copy = scale.copy;
scale.padding = scale.paddingOuter;
delete scale.paddingInner;
delete scale.paddingOuter;
scale.copy = function() {
return pointish(copy());
};
return scale;
}
function point$4() {
return pointish(band.apply(null, arguments).paddingInner(1));
}
function constants(x) {
return function() {
return x;
};
}
function number$1(x) {
return +x;
}
var unit = [0, 1];
function identity$3(x) {
return x;
}
function normalize(a, b) {
return (b -= (a = +a))
? function(x) { return (x - a) / b; }
: constants(isNaN(b) ? NaN : 0.5);
}
function clamper(a, b) {
var t;
if (a > b) t = a, a = b, b = t;
return function(x) { return Math.max(a, Math.min(b, x)); };
}
// normalize(a, b)(x) takes a domain value x in [a,b] and returns the corresponding parameter t in [0,1].
// interpolate(a, b)(t) takes a parameter t in [0,1] and returns the corresponding range value x in [a,b].
function bimap(domain, range, interpolate) {
var d0 = domain[0], d1 = domain[1], r0 = range[0], r1 = range[1];
if (d1 < d0) d0 = normalize(d1, d0), r0 = interpolate(r1, r0);
else d0 = normalize(d0, d1), r0 = interpolate(r0, r1);
return function(x) { return r0(d0(x)); };
}
function polymap(domain, range, interpolate) {
var j = Math.min(domain.length, range.length) - 1,
d = new Array(j),
r = new Array(j),
i = -1;
// Reverse descending domains.
if (domain[j] < domain[0]) {
domain = domain.slice().reverse();
range = range.slice().reverse();
}
while (++i < j) {
d[i] = normalize(domain[i], domain[i + 1]);
r[i] = interpolate(range[i], range[i + 1]);
}
return function(x) {
var i = bisect(domain, x, 1, j) - 1;
return r[i](d[i](x));
};
}
function copy$1(source, target) {
return target
.domain(source.domain())
.range(source.range())
.interpolate(source.interpolate())
.clamp(source.clamp())
.unknown(source.unknown());
}
function transformer$2() {
var domain = unit,
range = unit,
interpolate = interpolate$2,
transform,
untransform,
unknown,
clamp = identity$3,
piecewise,
output,
input;
function rescale() {
var n = Math.min(domain.length, range.length);
if (clamp !== identity$3) clamp = clamper(domain[0], domain[n - 1]);
piecewise = n > 2 ? polymap : bimap;
output = input = null;
return scale;
}
function scale(x) {
return x == null || isNaN(x = +x) ? unknown : (output || (output = piecewise(domain.map(transform), range, interpolate)))(transform(clamp(x)));
}
scale.invert = function(y) {
return clamp(untransform((input || (input = piecewise(range, domain.map(transform), interpolateNumber)))(y)));
};
scale.domain = function(_) {
return arguments.length ? (domain = Array.from(_, number$1), rescale()) : domain.slice();
};
scale.range = function(_) {
return arguments.length ? (range = Array.from(_), rescale()) : range.slice();
};
scale.rangeRound = function(_) {
return range = Array.from(_), interpolate = interpolateRound, rescale();
};
scale.clamp = function(_) {
return arguments.length ? (clamp = _ ? true : identity$3, rescale()) : clamp !== identity$3;
};
scale.interpolate = function(_) {
return arguments.length ? (interpolate = _, rescale()) : interpolate;
};
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
return function(t, u) {
transform = t, untransform = u;
return rescale();
};
}
function continuous() {
return transformer$2()(identity$3, identity$3);
}
function tickFormat(start, stop, count, specifier) {
var step = tickStep(start, stop, count),
precision;
specifier = formatSpecifier(specifier == null ? ",f" : specifier);
switch (specifier.type) {
case "s": {
var value = Math.max(Math.abs(start), Math.abs(stop));
if (specifier.precision == null && !isNaN(precision = precisionPrefix(step, value))) specifier.precision = precision;
return exports.formatPrefix(specifier, value);
}
case "":
case "e":
case "g":
case "p":
case "r": {
if (specifier.precision == null && !isNaN(precision = precisionRound(step, Math.max(Math.abs(start), Math.abs(stop))))) specifier.precision = precision - (specifier.type === "e");
break;
}
case "f":
case "%": {
if (specifier.precision == null && !isNaN(precision = precisionFixed(step))) specifier.precision = precision - (specifier.type === "%") * 2;
break;
}
}
return exports.format(specifier);
}
function linearish(scale) {
var domain = scale.domain;
scale.ticks = function(count) {
var d = domain();
return ticks(d[0], d[d.length - 1], count == null ? 10 : count);
};
scale.tickFormat = function(count, specifier) {
var d = domain();
return tickFormat(d[0], d[d.length - 1], count == null ? 10 : count, specifier);
};
scale.nice = function(count) {
if (count == null) count = 10;
var d = domain();
var i0 = 0;
var i1 = d.length - 1;
var start = d[i0];
var stop = d[i1];
var prestep;
var step;
var maxIter = 10;
if (stop < start) {
step = start, start = stop, stop = step;
step = i0, i0 = i1, i1 = step;
}
while (maxIter-- > 0) {
step = tickIncrement(start, stop, count);
if (step === prestep) {
d[i0] = start;
d[i1] = stop;
return domain(d);
} else if (step > 0) {
start = Math.floor(start / step) * step;
stop = Math.ceil(stop / step) * step;
} else if (step < 0) {
start = Math.ceil(start * step) / step;
stop = Math.floor(stop * step) / step;
} else {
break;
}
prestep = step;
}
return scale;
};
return scale;
}
function linear() {
var scale = continuous();
scale.copy = function() {
return copy$1(scale, linear());
};
initRange.apply(scale, arguments);
return linearish(scale);
}
function identity$2(domain) {
var unknown;
function scale(x) {
return x == null || isNaN(x = +x) ? unknown : x;
}
scale.invert = scale;
scale.domain = scale.range = function(_) {
return arguments.length ? (domain = Array.from(_, number$1), scale) : domain.slice();
};
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
scale.copy = function() {
return identity$2(domain).unknown(unknown);
};
domain = arguments.length ? Array.from(domain, number$1) : [0, 1];
return linearish(scale);
}
function nice(domain, interval) {
domain = domain.slice();
var i0 = 0,
i1 = domain.length - 1,
x0 = domain[i0],
x1 = domain[i1],
t;
if (x1 < x0) {
t = i0, i0 = i1, i1 = t;
t = x0, x0 = x1, x1 = t;
}
domain[i0] = interval.floor(x0);
domain[i1] = interval.ceil(x1);
return domain;
}
function transformLog(x) {
return Math.log(x);
}
function transformExp(x) {
return Math.exp(x);
}
function transformLogn(x) {
return -Math.log(-x);
}
function transformExpn(x) {
return -Math.exp(-x);
}
function pow10(x) {
return isFinite(x) ? +("1e" + x) : x < 0 ? 0 : x;
}
function powp(base) {
return base === 10 ? pow10
: base === Math.E ? Math.exp
: x => Math.pow(base, x);
}
function logp(base) {
return base === Math.E ? Math.log
: base === 10 && Math.log10
|| base === 2 && Math.log2
|| (base = Math.log(base), x => Math.log(x) / base);
}
function reflect(f) {
return (x, k) => -f(-x, k);
}
function loggish(transform) {
const scale = transform(transformLog, transformExp);
const domain = scale.domain;
let base = 10;
let logs;
let pows;
function rescale() {
logs = logp(base), pows = powp(base);
if (domain()[0] < 0) {
logs = reflect(logs), pows = reflect(pows);
transform(transformLogn, transformExpn);
} else {
transform(transformLog, transformExp);
}
return scale;
}
scale.base = function(_) {
return arguments.length ? (base = +_, rescale()) : base;
};
scale.domain = function(_) {
return arguments.length ? (domain(_), rescale()) : domain();
};
scale.ticks = count => {
const d = domain();
let u = d[0];
let v = d[d.length - 1];
const r = v < u;
if (r) ([u, v] = [v, u]);
let i = logs(u);
let j = logs(v);
let k;
let t;
const n = count == null ? 10 : +count;
let z = [];
if (!(base % 1) && j - i < n) {
i = Math.floor(i), j = Math.ceil(j);
if (u > 0) for (; i <= j; ++i) {
for (k = 1; k < base; ++k) {
t = i < 0 ? k / pows(-i) : k * pows(i);
if (t < u) continue;
if (t > v) break;
z.push(t);
}
} else for (; i <= j; ++i) {
for (k = base - 1; k >= 1; --k) {
t = i > 0 ? k / pows(-i) : k * pows(i);
if (t < u) continue;
if (t > v) break;
z.push(t);
}
}
if (z.length * 2 < n) z = ticks(u, v, n);
} else {
z = ticks(i, j, Math.min(j - i, n)).map(pows);
}
return r ? z.reverse() : z;
};
scale.tickFormat = (count, specifier) => {
if (count == null) count = 10;
if (specifier == null) specifier = base === 10 ? "s" : ",";
if (typeof specifier !== "function") {
if (!(base % 1) && (specifier = formatSpecifier(specifier)).precision == null) specifier.trim = true;
specifier = exports.format(specifier);
}
if (count === Infinity) return specifier;
const k = Math.max(1, base * count / scale.ticks().length); // TODO fast estimate?
return d => {
let i = d / pows(Math.round(logs(d)));
if (i * base < base - 0.5) i *= base;
return i <= k ? specifier(d) : "";
};
};
scale.nice = () => {
return domain(nice(domain(), {
floor: x => pows(Math.floor(logs(x))),
ceil: x => pows(Math.ceil(logs(x)))
}));
};
return scale;
}
function log() {
const scale = loggish(transformer$2()).domain([1, 10]);
scale.copy = () => copy$1(scale, log()).base(scale.base());
initRange.apply(scale, arguments);
return scale;
}
function transformSymlog(c) {
return function(x) {
return Math.sign(x) * Math.log1p(Math.abs(x / c));
};
}
function transformSymexp(c) {
return function(x) {
return Math.sign(x) * Math.expm1(Math.abs(x)) * c;
};
}
function symlogish(transform) {
var c = 1, scale = transform(transformSymlog(c), transformSymexp(c));
scale.constant = function(_) {
return arguments.length ? transform(transformSymlog(c = +_), transformSymexp(c)) : c;
};
return linearish(scale);
}
function symlog() {
var scale = symlogish(transformer$2());
scale.copy = function() {
return copy$1(scale, symlog()).constant(scale.constant());
};
return initRange.apply(scale, arguments);
}
function transformPow(exponent) {
return function(x) {
return x < 0 ? -Math.pow(-x, exponent) : Math.pow(x, exponent);
};
}
function transformSqrt(x) {
return x < 0 ? -Math.sqrt(-x) : Math.sqrt(x);
}
function transformSquare(x) {
return x < 0 ? -x * x : x * x;
}
function powish(transform) {
var scale = transform(identity$3, identity$3),
exponent = 1;
function rescale() {
return exponent === 1 ? transform(identity$3, identity$3)
: exponent === 0.5 ? transform(transformSqrt, transformSquare)
: transform(transformPow(exponent), transformPow(1 / exponent));
}
scale.exponent = function(_) {
return arguments.length ? (exponent = +_, rescale()) : exponent;
};
return linearish(scale);
}
function pow() {
var scale = powish(transformer$2());
scale.copy = function() {
return copy$1(scale, pow()).exponent(scale.exponent());
};
initRange.apply(scale, arguments);
return scale;
}
function sqrt$1() {
return pow.apply(null, arguments).exponent(0.5);
}
function square$1(x) {
return Math.sign(x) * x * x;
}
function unsquare(x) {
return Math.sign(x) * Math.sqrt(Math.abs(x));
}
function radial() {
var squared = continuous(),
range = [0, 1],
round = false,
unknown;
function scale(x) {
var y = unsquare(squared(x));
return isNaN(y) ? unknown : round ? Math.round(y) : y;
}
scale.invert = function(y) {
return squared.invert(square$1(y));
};
scale.domain = function(_) {
return arguments.length ? (squared.domain(_), scale) : squared.domain();
};
scale.range = function(_) {
return arguments.length ? (squared.range((range = Array.from(_, number$1)).map(square$1)), scale) : range.slice();
};
scale.rangeRound = function(_) {
return scale.range(_).round(true);
};
scale.round = function(_) {
return arguments.length ? (round = !!_, scale) : round;
};
scale.clamp = function(_) {
return arguments.length ? (squared.clamp(_), scale) : squared.clamp();
};
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
scale.copy = function() {
return radial(squared.domain(), range)
.round(round)
.clamp(squared.clamp())
.unknown(unknown);
};
initRange.apply(scale, arguments);
return linearish(scale);
}
function quantile() {
var domain = [],
range = [],
thresholds = [],
unknown;
function rescale() {
var i = 0, n = Math.max(1, range.length);
thresholds = new Array(n - 1);
while (++i < n) thresholds[i - 1] = quantileSorted(domain, i / n);
return scale;
}
function scale(x) {
return x == null || isNaN(x = +x) ? unknown : range[bisect(thresholds, x)];
}
scale.invertExtent = function(y) {
var i = range.indexOf(y);
return i < 0 ? [NaN, NaN] : [
i > 0 ? thresholds[i - 1] : domain[0],
i < thresholds.length ? thresholds[i] : domain[domain.length - 1]
];
};
scale.domain = function(_) {
if (!arguments.length) return domain.slice();
domain = [];
for (let d of _) if (d != null && !isNaN(d = +d)) domain.push(d);
domain.sort(ascending$3);
return rescale();
};
scale.range = function(_) {
return arguments.length ? (range = Array.from(_), rescale()) : range.slice();
};
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
scale.quantiles = function() {
return thresholds.slice();
};
scale.copy = function() {
return quantile()
.domain(domain)
.range(range)
.unknown(unknown);
};
return initRange.apply(scale, arguments);
}
function quantize() {
var x0 = 0,
x1 = 1,
n = 1,
domain = [0.5],
range = [0, 1],
unknown;
function scale(x) {
return x != null && x <= x ? range[bisect(domain, x, 0, n)] : unknown;
}
function rescale() {
var i = -1;
domain = new Array(n);
while (++i < n) domain[i] = ((i + 1) * x1 - (i - n) * x0) / (n + 1);
return scale;
}
scale.domain = function(_) {
return arguments.length ? ([x0, x1] = _, x0 = +x0, x1 = +x1, rescale()) : [x0, x1];
};
scale.range = function(_) {
return arguments.length ? (n = (range = Array.from(_)).length - 1, rescale()) : range.slice();
};
scale.invertExtent = function(y) {
var i = range.indexOf(y);
return i < 0 ? [NaN, NaN]
: i < 1 ? [x0, domain[0]]
: i >= n ? [domain[n - 1], x1]
: [domain[i - 1], domain[i]];
};
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : scale;
};
scale.thresholds = function() {
return domain.slice();
};
scale.copy = function() {
return quantize()
.domain([x0, x1])
.range(range)
.unknown(unknown);
};
return initRange.apply(linearish(scale), arguments);
}
function threshold() {
var domain = [0.5],
range = [0, 1],
unknown,
n = 1;
function scale(x) {
return x != null && x <= x ? range[bisect(domain, x, 0, n)] : unknown;
}
scale.domain = function(_) {
return arguments.length ? (domain = Array.from(_), n = Math.min(domain.length, range.length - 1), scale) : domain.slice();
};
scale.range = function(_) {
return arguments.length ? (range = Array.from(_), n = Math.min(domain.length, range.length - 1), scale) : range.slice();
};
scale.invertExtent = function(y) {
var i = range.indexOf(y);
return [domain[i - 1], domain[i]];
};
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
scale.copy = function() {
return threshold()
.domain(domain)
.range(range)
.unknown(unknown);
};
return initRange.apply(scale, arguments);
}
const t0 = new Date, t1 = new Date;
function timeInterval(floori, offseti, count, field) {
function interval(date) {
return floori(date = arguments.length === 0 ? new Date : new Date(+date)), date;
}
interval.floor = (date) => {
return floori(date = new Date(+date)), date;
};
interval.ceil = (date) => {
return floori(date = new Date(date - 1)), offseti(date, 1), floori(date), date;
};
interval.round = (date) => {
const d0 = interval(date), d1 = interval.ceil(date);
return date - d0 < d1 - date ? d0 : d1;
};
interval.offset = (date, step) => {
return offseti(date = new Date(+date), step == null ? 1 : Math.floor(step)), date;
};
interval.range = (start, stop, step) => {
const range = [];
start = interval.ceil(start);
step = step == null ? 1 : Math.floor(step);
if (!(start < stop) || !(step > 0)) return range; // also handles Invalid Date
let previous;
do range.push(previous = new Date(+start)), offseti(start, step), floori(start);
while (previous < start && start < stop);
return range;
};
interval.filter = (test) => {
return timeInterval((date) => {
if (date >= date) while (floori(date), !test(date)) date.setTime(date - 1);
}, (date, step) => {
if (date >= date) {
if (step < 0) while (++step <= 0) {
while (offseti(date, -1), !test(date)) {} // eslint-disable-line no-empty
} else while (--step >= 0) {
while (offseti(date, +1), !test(date)) {} // eslint-disable-line no-empty
}
}
});
};
if (count) {
interval.count = (start, end) => {
t0.setTime(+start), t1.setTime(+end);
floori(t0), floori(t1);
return Math.floor(count(t0, t1));
};
interval.every = (step) => {
step = Math.floor(step);
return !isFinite(step) || !(step > 0) ? null
: !(step > 1) ? interval
: interval.filter(field
? (d) => field(d) % step === 0
: (d) => interval.count(0, d) % step === 0);
};
}
return interval;
}
const millisecond = timeInterval(() => {
// noop
}, (date, step) => {
date.setTime(+date + step);
}, (start, end) => {
return end - start;
});
// An optimized implementation for this simple case.
millisecond.every = (k) => {
k = Math.floor(k);
if (!isFinite(k) || !(k > 0)) return null;
if (!(k > 1)) return millisecond;
return timeInterval((date) => {
date.setTime(Math.floor(date / k) * k);
}, (date, step) => {
date.setTime(+date + step * k);
}, (start, end) => {
return (end - start) / k;
});
};
const milliseconds = millisecond.range;
const durationSecond = 1000;
const durationMinute = durationSecond * 60;
const durationHour = durationMinute * 60;
const durationDay = durationHour * 24;
const durationWeek = durationDay * 7;
const durationMonth = durationDay * 30;
const durationYear = durationDay * 365;
const second = timeInterval((date) => {
date.setTime(date - date.getMilliseconds());
}, (date, step) => {
date.setTime(+date + step * durationSecond);
}, (start, end) => {
return (end - start) / durationSecond;
}, (date) => {
return date.getUTCSeconds();
});
const seconds = second.range;
const timeMinute = timeInterval((date) => {
date.setTime(date - date.getMilliseconds() - date.getSeconds() * durationSecond);
}, (date, step) => {
date.setTime(+date + step * durationMinute);
}, (start, end) => {
return (end - start) / durationMinute;
}, (date) => {
return date.getMinutes();
});
const timeMinutes = timeMinute.range;
const utcMinute = timeInterval((date) => {
date.setUTCSeconds(0, 0);
}, (date, step) => {
date.setTime(+date + step * durationMinute);
}, (start, end) => {
return (end - start) / durationMinute;
}, (date) => {
return date.getUTCMinutes();
});
const utcMinutes = utcMinute.range;
const timeHour = timeInterval((date) => {
date.setTime(date - date.getMilliseconds() - date.getSeconds() * durationSecond - date.getMinutes() * durationMinute);
}, (date, step) => {
date.setTime(+date + step * durationHour);
}, (start, end) => {
return (end - start) / durationHour;
}, (date) => {
return date.getHours();
});
const timeHours = timeHour.range;
const utcHour = timeInterval((date) => {
date.setUTCMinutes(0, 0, 0);
}, (date, step) => {
date.setTime(+date + step * durationHour);
}, (start, end) => {
return (end - start) / durationHour;
}, (date) => {
return date.getUTCHours();
});
const utcHours = utcHour.range;
const timeDay = timeInterval(
date => date.setHours(0, 0, 0, 0),
(date, step) => date.setDate(date.getDate() + step),
(start, end) => (end - start - (end.getTimezoneOffset() - start.getTimezoneOffset()) * durationMinute) / durationDay,
date => date.getDate() - 1
);
const timeDays = timeDay.range;
const utcDay = timeInterval((date) => {
date.setUTCHours(0, 0, 0, 0);
}, (date, step) => {
date.setUTCDate(date.getUTCDate() + step);
}, (start, end) => {
return (end - start) / durationDay;
}, (date) => {
return date.getUTCDate() - 1;
});
const utcDays = utcDay.range;
const unixDay = timeInterval((date) => {
date.setUTCHours(0, 0, 0, 0);
}, (date, step) => {
date.setUTCDate(date.getUTCDate() + step);
}, (start, end) => {
return (end - start) / durationDay;
}, (date) => {
return Math.floor(date / durationDay);
});
const unixDays = unixDay.range;
function timeWeekday(i) {
return timeInterval((date) => {
date.setDate(date.getDate() - (date.getDay() + 7 - i) % 7);
date.setHours(0, 0, 0, 0);
}, (date, step) => {
date.setDate(date.getDate() + step * 7);
}, (start, end) => {
return (end - start - (end.getTimezoneOffset() - start.getTimezoneOffset()) * durationMinute) / durationWeek;
});
}
const timeSunday = timeWeekday(0);
const timeMonday = timeWeekday(1);
const timeTuesday = timeWeekday(2);
const timeWednesday = timeWeekday(3);
const timeThursday = timeWeekday(4);
const timeFriday = timeWeekday(5);
const timeSaturday = timeWeekday(6);
const timeSundays = timeSunday.range;
const timeMondays = timeMonday.range;
const timeTuesdays = timeTuesday.range;
const timeWednesdays = timeWednesday.range;
const timeThursdays = timeThursday.range;
const timeFridays = timeFriday.range;
const timeSaturdays = timeSaturday.range;
function utcWeekday(i) {
return timeInterval((date) => {
date.setUTCDate(date.getUTCDate() - (date.getUTCDay() + 7 - i) % 7);
date.setUTCHours(0, 0, 0, 0);
}, (date, step) => {
date.setUTCDate(date.getUTCDate() + step * 7);
}, (start, end) => {
return (end - start) / durationWeek;
});
}
const utcSunday = utcWeekday(0);
const utcMonday = utcWeekday(1);
const utcTuesday = utcWeekday(2);
const utcWednesday = utcWeekday(3);
const utcThursday = utcWeekday(4);
const utcFriday = utcWeekday(5);
const utcSaturday = utcWeekday(6);
const utcSundays = utcSunday.range;
const utcMondays = utcMonday.range;
const utcTuesdays = utcTuesday.range;
const utcWednesdays = utcWednesday.range;
const utcThursdays = utcThursday.range;
const utcFridays = utcFriday.range;
const utcSaturdays = utcSaturday.range;
const timeMonth = timeInterval((date) => {
date.setDate(1);
date.setHours(0, 0, 0, 0);
}, (date, step) => {
date.setMonth(date.getMonth() + step);
}, (start, end) => {
return end.getMonth() - start.getMonth() + (end.getFullYear() - start.getFullYear()) * 12;
}, (date) => {
return date.getMonth();
});
const timeMonths = timeMonth.range;
const utcMonth = timeInterval((date) => {
date.setUTCDate(1);
date.setUTCHours(0, 0, 0, 0);
}, (date, step) => {
date.setUTCMonth(date.getUTCMonth() + step);
}, (start, end) => {
return end.getUTCMonth() - start.getUTCMonth() + (end.getUTCFullYear() - start.getUTCFullYear()) * 12;
}, (date) => {
return date.getUTCMonth();
});
const utcMonths = utcMonth.range;
const timeYear = timeInterval((date) => {
date.setMonth(0, 1);
date.setHours(0, 0, 0, 0);
}, (date, step) => {
date.setFullYear(date.getFullYear() + step);
}, (start, end) => {
return end.getFullYear() - start.getFullYear();
}, (date) => {
return date.getFullYear();
});
// An optimized implementation for this simple case.
timeYear.every = (k) => {
return !isFinite(k = Math.floor(k)) || !(k > 0) ? null : timeInterval((date) => {
date.setFullYear(Math.floor(date.getFullYear() / k) * k);
date.setMonth(0, 1);
date.setHours(0, 0, 0, 0);
}, (date, step) => {
date.setFullYear(date.getFullYear() + step * k);
});
};
const timeYears = timeYear.range;
const utcYear = timeInterval((date) => {
date.setUTCMonth(0, 1);
date.setUTCHours(0, 0, 0, 0);
}, (date, step) => {
date.setUTCFullYear(date.getUTCFullYear() + step);
}, (start, end) => {
return end.getUTCFullYear() - start.getUTCFullYear();
}, (date) => {
return date.getUTCFullYear();
});
// An optimized implementation for this simple case.
utcYear.every = (k) => {
return !isFinite(k = Math.floor(k)) || !(k > 0) ? null : timeInterval((date) => {
date.setUTCFullYear(Math.floor(date.getUTCFullYear() / k) * k);
date.setUTCMonth(0, 1);
date.setUTCHours(0, 0, 0, 0);
}, (date, step) => {
date.setUTCFullYear(date.getUTCFullYear() + step * k);
});
};
const utcYears = utcYear.range;
function ticker(year, month, week, day, hour, minute) {
const tickIntervals = [
[second, 1, durationSecond],
[second, 5, 5 * durationSecond],
[second, 15, 15 * durationSecond],
[second, 30, 30 * durationSecond],
[minute, 1, durationMinute],
[minute, 5, 5 * durationMinute],
[minute, 15, 15 * durationMinute],
[minute, 30, 30 * durationMinute],
[ hour, 1, durationHour ],
[ hour, 3, 3 * durationHour ],
[ hour, 6, 6 * durationHour ],
[ hour, 12, 12 * durationHour ],
[ day, 1, durationDay ],
[ day, 2, 2 * durationDay ],
[ week, 1, durationWeek ],
[ month, 1, durationMonth ],
[ month, 3, 3 * durationMonth ],
[ year, 1, durationYear ]
];
function ticks(start, stop, count) {
const reverse = stop < start;
if (reverse) [start, stop] = [stop, start];
const interval = count && typeof count.range === "function" ? count : tickInterval(start, stop, count);
const ticks = interval ? interval.range(start, +stop + 1) : []; // inclusive stop
return reverse ? ticks.reverse() : ticks;
}
function tickInterval(start, stop, count) {
const target = Math.abs(stop - start) / count;
const i = bisector(([,, step]) => step).right(tickIntervals, target);
if (i === tickIntervals.length) return year.every(tickStep(start / durationYear, stop / durationYear, count));
if (i === 0) return millisecond.every(Math.max(tickStep(start, stop, count), 1));
const [t, step] = tickIntervals[target / tickIntervals[i - 1][2] < tickIntervals[i][2] / target ? i - 1 : i];
return t.every(step);
}
return [ticks, tickInterval];
}
const [utcTicks, utcTickInterval] = ticker(utcYear, utcMonth, utcSunday, unixDay, utcHour, utcMinute);
const [timeTicks, timeTickInterval] = ticker(timeYear, timeMonth, timeSunday, timeDay, timeHour, timeMinute);
function localDate(d) {
if (0 <= d.y && d.y < 100) {
var date = new Date(-1, d.m, d.d, d.H, d.M, d.S, d.L);
date.setFullYear(d.y);
return date;
}
return new Date(d.y, d.m, d.d, d.H, d.M, d.S, d.L);
}
function utcDate(d) {
if (0 <= d.y && d.y < 100) {
var date = new Date(Date.UTC(-1, d.m, d.d, d.H, d.M, d.S, d.L));
date.setUTCFullYear(d.y);
return date;
}
return new Date(Date.UTC(d.y, d.m, d.d, d.H, d.M, d.S, d.L));
}
function newDate(y, m, d) {
return {y: y, m: m, d: d, H: 0, M: 0, S: 0, L: 0};
}
function formatLocale(locale) {
var locale_dateTime = locale.dateTime,
locale_date = locale.date,
locale_time = locale.time,
locale_periods = locale.periods,
locale_weekdays = locale.days,
locale_shortWeekdays = locale.shortDays,
locale_months = locale.months,
locale_shortMonths = locale.shortMonths;
var periodRe = formatRe(locale_periods),
periodLookup = formatLookup(locale_periods),
weekdayRe = formatRe(locale_weekdays),
weekdayLookup = formatLookup(locale_weekdays),
shortWeekdayRe = formatRe(locale_shortWeekdays),
shortWeekdayLookup = formatLookup(locale_shortWeekdays),
monthRe = formatRe(locale_months),
monthLookup = formatLookup(locale_months),
shortMonthRe = formatRe(locale_shortMonths),
shortMonthLookup = formatLookup(locale_shortMonths);
var formats = {
"a": formatShortWeekday,
"A": formatWeekday,
"b": formatShortMonth,
"B": formatMonth,
"c": null,
"d": formatDayOfMonth,
"e": formatDayOfMonth,
"f": formatMicroseconds,
"g": formatYearISO,
"G": formatFullYearISO,
"H": formatHour24,
"I": formatHour12,
"j": formatDayOfYear,
"L": formatMilliseconds,
"m": formatMonthNumber,
"M": formatMinutes,
"p": formatPeriod,
"q": formatQuarter,
"Q": formatUnixTimestamp,
"s": formatUnixTimestampSeconds,
"S": formatSeconds,
"u": formatWeekdayNumberMonday,
"U": formatWeekNumberSunday,
"V": formatWeekNumberISO,
"w": formatWeekdayNumberSunday,
"W": formatWeekNumberMonday,
"x": null,
"X": null,
"y": formatYear,
"Y": formatFullYear,
"Z": formatZone,
"%": formatLiteralPercent
};
var utcFormats = {
"a": formatUTCShortWeekday,
"A": formatUTCWeekday,
"b": formatUTCShortMonth,
"B": formatUTCMonth,
"c": null,
"d": formatUTCDayOfMonth,
"e": formatUTCDayOfMonth,
"f": formatUTCMicroseconds,
"g": formatUTCYearISO,
"G": formatUTCFullYearISO,
"H": formatUTCHour24,
"I": formatUTCHour12,
"j": formatUTCDayOfYear,
"L": formatUTCMilliseconds,
"m": formatUTCMonthNumber,
"M": formatUTCMinutes,
"p": formatUTCPeriod,
"q": formatUTCQuarter,
"Q": formatUnixTimestamp,
"s": formatUnixTimestampSeconds,
"S": formatUTCSeconds,
"u": formatUTCWeekdayNumberMonday,
"U": formatUTCWeekNumberSunday,
"V": formatUTCWeekNumberISO,
"w": formatUTCWeekdayNumberSunday,
"W": formatUTCWeekNumberMonday,
"x": null,
"X": null,
"y": formatUTCYear,
"Y": formatUTCFullYear,
"Z": formatUTCZone,
"%": formatLiteralPercent
};
var parses = {
"a": parseShortWeekday,
"A": parseWeekday,
"b": parseShortMonth,
"B": parseMonth,
"c": parseLocaleDateTime,
"d": parseDayOfMonth,
"e": parseDayOfMonth,
"f": parseMicroseconds,
"g": parseYear,
"G": parseFullYear,
"H": parseHour24,
"I": parseHour24,
"j": parseDayOfYear,
"L": parseMilliseconds,
"m": parseMonthNumber,
"M": parseMinutes,
"p": parsePeriod,
"q": parseQuarter,
"Q": parseUnixTimestamp,
"s": parseUnixTimestampSeconds,
"S": parseSeconds,
"u": parseWeekdayNumberMonday,
"U": parseWeekNumberSunday,
"V": parseWeekNumberISO,
"w": parseWeekdayNumberSunday,
"W": parseWeekNumberMonday,
"x": parseLocaleDate,
"X": parseLocaleTime,
"y": parseYear,
"Y": parseFullYear,
"Z": parseZone,
"%": parseLiteralPercent
};
// These recursive directive definitions must be deferred.
formats.x = newFormat(locale_date, formats);
formats.X = newFormat(locale_time, formats);
formats.c = newFormat(locale_dateTime, formats);
utcFormats.x = newFormat(locale_date, utcFormats);
utcFormats.X = newFormat(locale_time, utcFormats);
utcFormats.c = newFormat(locale_dateTime, utcFormats);
function newFormat(specifier, formats) {
return function(date) {
var string = [],
i = -1,
j = 0,
n = specifier.length,
c,
pad,
format;
if (!(date instanceof Date)) date = new Date(+date);
while (++i < n) {
if (specifier.charCodeAt(i) === 37) {
string.push(specifier.slice(j, i));
if ((pad = pads[c = specifier.charAt(++i)]) != null) c = specifier.charAt(++i);
else pad = c === "e" ? " " : "0";
if (format = formats[c]) c = format(date, pad);
string.push(c);
j = i + 1;
}
}
string.push(specifier.slice(j, i));
return string.join("");
};
}
function newParse(specifier, Z) {
return function(string) {
var d = newDate(1900, undefined, 1),
i = parseSpecifier(d, specifier, string += "", 0),
week, day;
if (i != string.length) return null;
// If a UNIX timestamp is specified, return it.
if ("Q" in d) return new Date(d.Q);
if ("s" in d) return new Date(d.s * 1000 + ("L" in d ? d.L : 0));
// If this is utcParse, never use the local timezone.
if (Z && !("Z" in d)) d.Z = 0;
// The am-pm flag is 0 for AM, and 1 for PM.
if ("p" in d) d.H = d.H % 12 + d.p * 12;
// If the month was not specified, inherit from the quarter.
if (d.m === undefined) d.m = "q" in d ? d.q : 0;
// Convert day-of-week and week-of-year to day-of-year.
if ("V" in d) {
if (d.V < 1 || d.V > 53) return null;
if (!("w" in d)) d.w = 1;
if ("Z" in d) {
week = utcDate(newDate(d.y, 0, 1)), day = week.getUTCDay();
week = day > 4 || day === 0 ? utcMonday.ceil(week) : utcMonday(week);
week = utcDay.offset(week, (d.V - 1) * 7);
d.y = week.getUTCFullYear();
d.m = week.getUTCMonth();
d.d = week.getUTCDate() + (d.w + 6) % 7;
} else {
week = localDate(newDate(d.y, 0, 1)), day = week.getDay();
week = day > 4 || day === 0 ? timeMonday.ceil(week) : timeMonday(week);
week = timeDay.offset(week, (d.V - 1) * 7);
d.y = week.getFullYear();
d.m = week.getMonth();
d.d = week.getDate() + (d.w + 6) % 7;
}
} else if ("W" in d || "U" in d) {
if (!("w" in d)) d.w = "u" in d ? d.u % 7 : "W" in d ? 1 : 0;
day = "Z" in d ? utcDate(newDate(d.y, 0, 1)).getUTCDay() : localDate(newDate(d.y, 0, 1)).getDay();
d.m = 0;
d.d = "W" in d ? (d.w + 6) % 7 + d.W * 7 - (day + 5) % 7 : d.w + d.U * 7 - (day + 6) % 7;
}
// If a time zone is specified, all fields are interpreted as UTC and then
// offset according to the specified time zone.
if ("Z" in d) {
d.H += d.Z / 100 | 0;
d.M += d.Z % 100;
return utcDate(d);
}
// Otherwise, all fields are in local time.
return localDate(d);
};
}
function parseSpecifier(d, specifier, string, j) {
var i = 0,
n = specifier.length,
m = string.length,
c,
parse;
while (i < n) {
if (j >= m) return -1;
c = specifier.charCodeAt(i++);
if (c === 37) {
c = specifier.charAt(i++);
parse = parses[c in pads ? specifier.charAt(i++) : c];
if (!parse || ((j = parse(d, string, j)) < 0)) return -1;
} else if (c != string.charCodeAt(j++)) {
return -1;
}
}
return j;
}
function parsePeriod(d, string, i) {
var n = periodRe.exec(string.slice(i));
return n ? (d.p = periodLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
}
function parseShortWeekday(d, string, i) {
var n = shortWeekdayRe.exec(string.slice(i));
return n ? (d.w = shortWeekdayLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
}
function parseWeekday(d, string, i) {
var n = weekdayRe.exec(string.slice(i));
return n ? (d.w = weekdayLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
}
function parseShortMonth(d, string, i) {
var n = shortMonthRe.exec(string.slice(i));
return n ? (d.m = shortMonthLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
}
function parseMonth(d, string, i) {
var n = monthRe.exec(string.slice(i));
return n ? (d.m = monthLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
}
function parseLocaleDateTime(d, string, i) {
return parseSpecifier(d, locale_dateTime, string, i);
}
function parseLocaleDate(d, string, i) {
return parseSpecifier(d, locale_date, string, i);
}
function parseLocaleTime(d, string, i) {
return parseSpecifier(d, locale_time, string, i);
}
function formatShortWeekday(d) {
return locale_shortWeekdays[d.getDay()];
}
function formatWeekday(d) {
return locale_weekdays[d.getDay()];
}
function formatShortMonth(d) {
return locale_shortMonths[d.getMonth()];
}
function formatMonth(d) {
return locale_months[d.getMonth()];
}
function formatPeriod(d) {
return locale_periods[+(d.getHours() >= 12)];
}
function formatQuarter(d) {
return 1 + ~~(d.getMonth() / 3);
}
function formatUTCShortWeekday(d) {
return locale_shortWeekdays[d.getUTCDay()];
}
function formatUTCWeekday(d) {
return locale_weekdays[d.getUTCDay()];
}
function formatUTCShortMonth(d) {
return locale_shortMonths[d.getUTCMonth()];
}
function formatUTCMonth(d) {
return locale_months[d.getUTCMonth()];
}
function formatUTCPeriod(d) {
return locale_periods[+(d.getUTCHours() >= 12)];
}
function formatUTCQuarter(d) {
return 1 + ~~(d.getUTCMonth() / 3);
}
return {
format: function(specifier) {
var f = newFormat(specifier += "", formats);
f.toString = function() { return specifier; };
return f;
},
parse: function(specifier) {
var p = newParse(specifier += "", false);
p.toString = function() { return specifier; };
return p;
},
utcFormat: function(specifier) {
var f = newFormat(specifier += "", utcFormats);
f.toString = function() { return specifier; };
return f;
},
utcParse: function(specifier) {
var p = newParse(specifier += "", true);
p.toString = function() { return specifier; };
return p;
}
};
}
var pads = {"-": "", "_": " ", "0": "0"},
numberRe = /^\s*\d+/, // note: ignores next directive
percentRe = /^%/,
requoteRe = /[\\^$*+?|[\]().{}]/g;
function pad(value, fill, width) {
var sign = value < 0 ? "-" : "",
string = (sign ? -value : value) + "",
length = string.length;
return sign + (length < width ? new Array(width - length + 1).join(fill) + string : string);
}
function requote(s) {
return s.replace(requoteRe, "\\$&");
}
function formatRe(names) {
return new RegExp("^(?:" + names.map(requote).join("|") + ")", "i");
}
function formatLookup(names) {
return new Map(names.map((name, i) => [name.toLowerCase(), i]));
}
function parseWeekdayNumberSunday(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 1));
return n ? (d.w = +n[0], i + n[0].length) : -1;
}
function parseWeekdayNumberMonday(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 1));
return n ? (d.u = +n[0], i + n[0].length) : -1;
}
function parseWeekNumberSunday(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.U = +n[0], i + n[0].length) : -1;
}
function parseWeekNumberISO(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.V = +n[0], i + n[0].length) : -1;
}
function parseWeekNumberMonday(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.W = +n[0], i + n[0].length) : -1;
}
function parseFullYear(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 4));
return n ? (d.y = +n[0], i + n[0].length) : -1;
}
function parseYear(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.y = +n[0] + (+n[0] > 68 ? 1900 : 2000), i + n[0].length) : -1;
}
function parseZone(d, string, i) {
var n = /^(Z)|([+-]\d\d)(?::?(\d\d))?/.exec(string.slice(i, i + 6));
return n ? (d.Z = n[1] ? 0 : -(n[2] + (n[3] || "00")), i + n[0].length) : -1;
}
function parseQuarter(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 1));
return n ? (d.q = n[0] * 3 - 3, i + n[0].length) : -1;
}
function parseMonthNumber(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.m = n[0] - 1, i + n[0].length) : -1;
}
function parseDayOfMonth(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.d = +n[0], i + n[0].length) : -1;
}
function parseDayOfYear(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 3));
return n ? (d.m = 0, d.d = +n[0], i + n[0].length) : -1;
}
function parseHour24(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.H = +n[0], i + n[0].length) : -1;
}
function parseMinutes(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.M = +n[0], i + n[0].length) : -1;
}
function parseSeconds(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 2));
return n ? (d.S = +n[0], i + n[0].length) : -1;
}
function parseMilliseconds(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 3));
return n ? (d.L = +n[0], i + n[0].length) : -1;
}
function parseMicroseconds(d, string, i) {
var n = numberRe.exec(string.slice(i, i + 6));
return n ? (d.L = Math.floor(n[0] / 1000), i + n[0].length) : -1;
}
function parseLiteralPercent(d, string, i) {
var n = percentRe.exec(string.slice(i, i + 1));
return n ? i + n[0].length : -1;
}
function parseUnixTimestamp(d, string, i) {
var n = numberRe.exec(string.slice(i));
return n ? (d.Q = +n[0], i + n[0].length) : -1;
}
function parseUnixTimestampSeconds(d, string, i) {
var n = numberRe.exec(string.slice(i));
return n ? (d.s = +n[0], i + n[0].length) : -1;
}
function formatDayOfMonth(d, p) {
return pad(d.getDate(), p, 2);
}
function formatHour24(d, p) {
return pad(d.getHours(), p, 2);
}
function formatHour12(d, p) {
return pad(d.getHours() % 12 || 12, p, 2);
}
function formatDayOfYear(d, p) {
return pad(1 + timeDay.count(timeYear(d), d), p, 3);
}
function formatMilliseconds(d, p) {
return pad(d.getMilliseconds(), p, 3);
}
function formatMicroseconds(d, p) {
return formatMilliseconds(d, p) + "000";
}
function formatMonthNumber(d, p) {
return pad(d.getMonth() + 1, p, 2);
}
function formatMinutes(d, p) {
return pad(d.getMinutes(), p, 2);
}
function formatSeconds(d, p) {
return pad(d.getSeconds(), p, 2);
}
function formatWeekdayNumberMonday(d) {
var day = d.getDay();
return day === 0 ? 7 : day;
}
function formatWeekNumberSunday(d, p) {
return pad(timeSunday.count(timeYear(d) - 1, d), p, 2);
}
function dISO(d) {
var day = d.getDay();
return (day >= 4 || day === 0) ? timeThursday(d) : timeThursday.ceil(d);
}
function formatWeekNumberISO(d, p) {
d = dISO(d);
return pad(timeThursday.count(timeYear(d), d) + (timeYear(d).getDay() === 4), p, 2);
}
function formatWeekdayNumberSunday(d) {
return d.getDay();
}
function formatWeekNumberMonday(d, p) {
return pad(timeMonday.count(timeYear(d) - 1, d), p, 2);
}
function formatYear(d, p) {
return pad(d.getFullYear() % 100, p, 2);
}
function formatYearISO(d, p) {
d = dISO(d);
return pad(d.getFullYear() % 100, p, 2);
}
function formatFullYear(d, p) {
return pad(d.getFullYear() % 10000, p, 4);
}
function formatFullYearISO(d, p) {
var day = d.getDay();
d = (day >= 4 || day === 0) ? timeThursday(d) : timeThursday.ceil(d);
return pad(d.getFullYear() % 10000, p, 4);
}
function formatZone(d) {
var z = d.getTimezoneOffset();
return (z > 0 ? "-" : (z *= -1, "+"))
+ pad(z / 60 | 0, "0", 2)
+ pad(z % 60, "0", 2);
}
function formatUTCDayOfMonth(d, p) {
return pad(d.getUTCDate(), p, 2);
}
function formatUTCHour24(d, p) {
return pad(d.getUTCHours(), p, 2);
}
function formatUTCHour12(d, p) {
return pad(d.getUTCHours() % 12 || 12, p, 2);
}
function formatUTCDayOfYear(d, p) {
return pad(1 + utcDay.count(utcYear(d), d), p, 3);
}
function formatUTCMilliseconds(d, p) {
return pad(d.getUTCMilliseconds(), p, 3);
}
function formatUTCMicroseconds(d, p) {
return formatUTCMilliseconds(d, p) + "000";
}
function formatUTCMonthNumber(d, p) {
return pad(d.getUTCMonth() + 1, p, 2);
}
function formatUTCMinutes(d, p) {
return pad(d.getUTCMinutes(), p, 2);
}
function formatUTCSeconds(d, p) {
return pad(d.getUTCSeconds(), p, 2);
}
function formatUTCWeekdayNumberMonday(d) {
var dow = d.getUTCDay();
return dow === 0 ? 7 : dow;
}
function formatUTCWeekNumberSunday(d, p) {
return pad(utcSunday.count(utcYear(d) - 1, d), p, 2);
}
function UTCdISO(d) {
var day = d.getUTCDay();
return (day >= 4 || day === 0) ? utcThursday(d) : utcThursday.ceil(d);
}
function formatUTCWeekNumberISO(d, p) {
d = UTCdISO(d);
return pad(utcThursday.count(utcYear(d), d) + (utcYear(d).getUTCDay() === 4), p, 2);
}
function formatUTCWeekdayNumberSunday(d) {
return d.getUTCDay();
}
function formatUTCWeekNumberMonday(d, p) {
return pad(utcMonday.count(utcYear(d) - 1, d), p, 2);
}
function formatUTCYear(d, p) {
return pad(d.getUTCFullYear() % 100, p, 2);
}
function formatUTCYearISO(d, p) {
d = UTCdISO(d);
return pad(d.getUTCFullYear() % 100, p, 2);
}
function formatUTCFullYear(d, p) {
return pad(d.getUTCFullYear() % 10000, p, 4);
}
function formatUTCFullYearISO(d, p) {
var day = d.getUTCDay();
d = (day >= 4 || day === 0) ? utcThursday(d) : utcThursday.ceil(d);
return pad(d.getUTCFullYear() % 10000, p, 4);
}
function formatUTCZone() {
return "+0000";
}
function formatLiteralPercent() {
return "%";
}
function formatUnixTimestamp(d) {
return +d;
}
function formatUnixTimestampSeconds(d) {
return Math.floor(+d / 1000);
}
var locale;
exports.timeFormat = void 0;
exports.timeParse = void 0;
exports.utcFormat = void 0;
exports.utcParse = void 0;
defaultLocale({
dateTime: "%x, %X",
date: "%-m/%-d/%Y",
time: "%-I:%M:%S %p",
periods: ["AM", "PM"],
days: ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"],
shortDays: ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
months: ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"],
shortMonths: ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
});
function defaultLocale(definition) {
locale = formatLocale(definition);
exports.timeFormat = locale.format;
exports.timeParse = locale.parse;
exports.utcFormat = locale.utcFormat;
exports.utcParse = locale.utcParse;
return locale;
}
var isoSpecifier = "%Y-%m-%dT%H:%M:%S.%LZ";
function formatIsoNative(date) {
return date.toISOString();
}
var formatIso = Date.prototype.toISOString
? formatIsoNative
: exports.utcFormat(isoSpecifier);
var formatIso$1 = formatIso;
function parseIsoNative(string) {
var date = new Date(string);
return isNaN(date) ? null : date;
}
var parseIso = +new Date("2000-01-01T00:00:00.000Z")
? parseIsoNative
: exports.utcParse(isoSpecifier);
var parseIso$1 = parseIso;
function date(t) {
return new Date(t);
}
function number(t) {
return t instanceof Date ? +t : +new Date(+t);
}
function calendar(ticks, tickInterval, year, month, week, day, hour, minute, second, format) {
var scale = continuous(),
invert = scale.invert,
domain = scale.domain;
var formatMillisecond = format(".%L"),
formatSecond = format(":%S"),
formatMinute = format("%I:%M"),
formatHour = format("%I %p"),
formatDay = format("%a %d"),
formatWeek = format("%b %d"),
formatMonth = format("%B"),
formatYear = format("%Y");
function tickFormat(date) {
return (second(date) < date ? formatMillisecond
: minute(date) < date ? formatSecond
: hour(date) < date ? formatMinute
: day(date) < date ? formatHour
: month(date) < date ? (week(date) < date ? formatDay : formatWeek)
: year(date) < date ? formatMonth
: formatYear)(date);
}
scale.invert = function(y) {
return new Date(invert(y));
};
scale.domain = function(_) {
return arguments.length ? domain(Array.from(_, number)) : domain().map(date);
};
scale.ticks = function(interval) {
var d = domain();
return ticks(d[0], d[d.length - 1], interval == null ? 10 : interval);
};
scale.tickFormat = function(count, specifier) {
return specifier == null ? tickFormat : format(specifier);
};
scale.nice = function(interval) {
var d = domain();
if (!interval || typeof interval.range !== "function") interval = tickInterval(d[0], d[d.length - 1], interval == null ? 10 : interval);
return interval ? domain(nice(d, interval)) : scale;
};
scale.copy = function() {
return copy$1(scale, calendar(ticks, tickInterval, year, month, week, day, hour, minute, second, format));
};
return scale;
}
function time() {
return initRange.apply(calendar(timeTicks, timeTickInterval, timeYear, timeMonth, timeSunday, timeDay, timeHour, timeMinute, second, exports.timeFormat).domain([new Date(2000, 0, 1), new Date(2000, 0, 2)]), arguments);
}
function utcTime() {
return initRange.apply(calendar(utcTicks, utcTickInterval, utcYear, utcMonth, utcSunday, utcDay, utcHour, utcMinute, second, exports.utcFormat).domain([Date.UTC(2000, 0, 1), Date.UTC(2000, 0, 2)]), arguments);
}
function transformer$1() {
var x0 = 0,
x1 = 1,
t0,
t1,
k10,
transform,
interpolator = identity$3,
clamp = false,
unknown;
function scale(x) {
return x == null || isNaN(x = +x) ? unknown : interpolator(k10 === 0 ? 0.5 : (x = (transform(x) - t0) * k10, clamp ? Math.max(0, Math.min(1, x)) : x));
}
scale.domain = function(_) {
return arguments.length ? ([x0, x1] = _, t0 = transform(x0 = +x0), t1 = transform(x1 = +x1), k10 = t0 === t1 ? 0 : 1 / (t1 - t0), scale) : [x0, x1];
};
scale.clamp = function(_) {
return arguments.length ? (clamp = !!_, scale) : clamp;
};
scale.interpolator = function(_) {
return arguments.length ? (interpolator = _, scale) : interpolator;
};
function range(interpolate) {
return function(_) {
var r0, r1;
return arguments.length ? ([r0, r1] = _, interpolator = interpolate(r0, r1), scale) : [interpolator(0), interpolator(1)];
};
}
scale.range = range(interpolate$2);
scale.rangeRound = range(interpolateRound);
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
return function(t) {
transform = t, t0 = t(x0), t1 = t(x1), k10 = t0 === t1 ? 0 : 1 / (t1 - t0);
return scale;
};
}
function copy(source, target) {
return target
.domain(source.domain())
.interpolator(source.interpolator())
.clamp(source.clamp())
.unknown(source.unknown());
}
function sequential() {
var scale = linearish(transformer$1()(identity$3));
scale.copy = function() {
return copy(scale, sequential());
};
return initInterpolator.apply(scale, arguments);
}
function sequentialLog() {
var scale = loggish(transformer$1()).domain([1, 10]);
scale.copy = function() {
return copy(scale, sequentialLog()).base(scale.base());
};
return initInterpolator.apply(scale, arguments);
}
function sequentialSymlog() {
var scale = symlogish(transformer$1());
scale.copy = function() {
return copy(scale, sequentialSymlog()).constant(scale.constant());
};
return initInterpolator.apply(scale, arguments);
}
function sequentialPow() {
var scale = powish(transformer$1());
scale.copy = function() {
return copy(scale, sequentialPow()).exponent(scale.exponent());
};
return initInterpolator.apply(scale, arguments);
}
function sequentialSqrt() {
return sequentialPow.apply(null, arguments).exponent(0.5);
}
function sequentialQuantile() {
var domain = [],
interpolator = identity$3;
function scale(x) {
if (x != null && !isNaN(x = +x)) return interpolator((bisect(domain, x, 1) - 1) / (domain.length - 1));
}
scale.domain = function(_) {
if (!arguments.length) return domain.slice();
domain = [];
for (let d of _) if (d != null && !isNaN(d = +d)) domain.push(d);
domain.sort(ascending$3);
return scale;
};
scale.interpolator = function(_) {
return arguments.length ? (interpolator = _, scale) : interpolator;
};
scale.range = function() {
return domain.map((d, i) => interpolator(i / (domain.length - 1)));
};
scale.quantiles = function(n) {
return Array.from({length: n + 1}, (_, i) => quantile$1(domain, i / n));
};
scale.copy = function() {
return sequentialQuantile(interpolator).domain(domain);
};
return initInterpolator.apply(scale, arguments);
}
function transformer() {
var x0 = 0,
x1 = 0.5,
x2 = 1,
s = 1,
t0,
t1,
t2,
k10,
k21,
interpolator = identity$3,
transform,
clamp = false,
unknown;
function scale(x) {
return isNaN(x = +x) ? unknown : (x = 0.5 + ((x = +transform(x)) - t1) * (s * x < s * t1 ? k10 : k21), interpolator(clamp ? Math.max(0, Math.min(1, x)) : x));
}
scale.domain = function(_) {
return arguments.length ? ([x0, x1, x2] = _, t0 = transform(x0 = +x0), t1 = transform(x1 = +x1), t2 = transform(x2 = +x2), k10 = t0 === t1 ? 0 : 0.5 / (t1 - t0), k21 = t1 === t2 ? 0 : 0.5 / (t2 - t1), s = t1 < t0 ? -1 : 1, scale) : [x0, x1, x2];
};
scale.clamp = function(_) {
return arguments.length ? (clamp = !!_, scale) : clamp;
};
scale.interpolator = function(_) {
return arguments.length ? (interpolator = _, scale) : interpolator;
};
function range(interpolate) {
return function(_) {
var r0, r1, r2;
return arguments.length ? ([r0, r1, r2] = _, interpolator = piecewise(interpolate, [r0, r1, r2]), scale) : [interpolator(0), interpolator(0.5), interpolator(1)];
};
}
scale.range = range(interpolate$2);
scale.rangeRound = range(interpolateRound);
scale.unknown = function(_) {
return arguments.length ? (unknown = _, scale) : unknown;
};
return function(t) {
transform = t, t0 = t(x0), t1 = t(x1), t2 = t(x2), k10 = t0 === t1 ? 0 : 0.5 / (t1 - t0), k21 = t1 === t2 ? 0 : 0.5 / (t2 - t1), s = t1 < t0 ? -1 : 1;
return scale;
};
}
function diverging$1() {
var scale = linearish(transformer()(identity$3));
scale.copy = function() {
return copy(scale, diverging$1());
};
return initInterpolator.apply(scale, arguments);
}
function divergingLog() {
var scale = loggish(transformer()).domain([0.1, 1, 10]);
scale.copy = function() {
return copy(scale, divergingLog()).base(scale.base());
};
return initInterpolator.apply(scale, arguments);
}
function divergingSymlog() {
var scale = symlogish(transformer());
scale.copy = function() {
return copy(scale, divergingSymlog()).constant(scale.constant());
};
return initInterpolator.apply(scale, arguments);
}
function divergingPow() {
var scale = powish(transformer());
scale.copy = function() {
return copy(scale, divergingPow()).exponent(scale.exponent());
};
return initInterpolator.apply(scale, arguments);
}
function divergingSqrt() {
return divergingPow.apply(null, arguments).exponent(0.5);
}
function colors(specifier) {
var n = specifier.length / 6 | 0, colors = new Array(n), i = 0;
while (i < n) colors[i] = "#" + specifier.slice(i * 6, ++i * 6);
return colors;
}
var category10 = colors("1f77b4ff7f0e2ca02cd627289467bd8c564be377c27f7f7fbcbd2217becf");
var Accent = colors("7fc97fbeaed4fdc086ffff99386cb0f0027fbf5b17666666");
var Dark2 = colors("1b9e77d95f027570b3e7298a66a61ee6ab02a6761d666666");
var observable10 = colors("4269d0efb118ff725c6cc5b03ca951ff8ab7a463f297bbf59c6b4e9498a0");
var Paired = colors("a6cee31f78b4b2df8a33a02cfb9a99e31a1cfdbf6fff7f00cab2d66a3d9affff99b15928");
var Pastel1 = colors("fbb4aeb3cde3ccebc5decbe4fed9a6ffffcce5d8bdfddaecf2f2f2");
var Pastel2 = colors("b3e2cdfdcdaccbd5e8f4cae4e6f5c9fff2aef1e2cccccccc");
var Set1 = colors("e41a1c377eb84daf4a984ea3ff7f00ffff33a65628f781bf999999");
var Set2 = colors("66c2a5fc8d628da0cbe78ac3a6d854ffd92fe5c494b3b3b3");
var Set3 = colors("8dd3c7ffffb3bebadafb807280b1d3fdb462b3de69fccde5d9d9d9bc80bdccebc5ffed6f");
var Tableau10 = colors("4e79a7f28e2ce1575976b7b259a14fedc949af7aa1ff9da79c755fbab0ab");
var ramp$1 = scheme => rgbBasis(scheme[scheme.length - 1]);
var scheme$q = new Array(3).concat(
"d8b365f5f5f55ab4ac",
"a6611adfc27d80cdc1018571",
"a6611adfc27df5f5f580cdc1018571",
"8c510ad8b365f6e8c3c7eae55ab4ac01665e",
"8c510ad8b365f6e8c3f5f5f5c7eae55ab4ac01665e",
"8c510abf812ddfc27df6e8c3c7eae580cdc135978f01665e",
"8c510abf812ddfc27df6e8c3f5f5f5c7eae580cdc135978f01665e",
"5430058c510abf812ddfc27df6e8c3c7eae580cdc135978f01665e003c30",
"5430058c510abf812ddfc27df6e8c3f5f5f5c7eae580cdc135978f01665e003c30"
).map(colors);
var BrBG = ramp$1(scheme$q);
var scheme$p = new Array(3).concat(
"af8dc3f7f7f77fbf7b",
"7b3294c2a5cfa6dba0008837",
"7b3294c2a5cff7f7f7a6dba0008837",
"762a83af8dc3e7d4e8d9f0d37fbf7b1b7837",
"762a83af8dc3e7d4e8f7f7f7d9f0d37fbf7b1b7837",
"762a839970abc2a5cfe7d4e8d9f0d3a6dba05aae611b7837",
"762a839970abc2a5cfe7d4e8f7f7f7d9f0d3a6dba05aae611b7837",
"40004b762a839970abc2a5cfe7d4e8d9f0d3a6dba05aae611b783700441b",
"40004b762a839970abc2a5cfe7d4e8f7f7f7d9f0d3a6dba05aae611b783700441b"
).map(colors);
var PRGn = ramp$1(scheme$p);
var scheme$o = new Array(3).concat(
"e9a3c9f7f7f7a1d76a",
"d01c8bf1b6dab8e1864dac26",
"d01c8bf1b6daf7f7f7b8e1864dac26",
"c51b7de9a3c9fde0efe6f5d0a1d76a4d9221",
"c51b7de9a3c9fde0eff7f7f7e6f5d0a1d76a4d9221",
"c51b7dde77aef1b6dafde0efe6f5d0b8e1867fbc414d9221",
"c51b7dde77aef1b6dafde0eff7f7f7e6f5d0b8e1867fbc414d9221",
"8e0152c51b7dde77aef1b6dafde0efe6f5d0b8e1867fbc414d9221276419",
"8e0152c51b7dde77aef1b6dafde0eff7f7f7e6f5d0b8e1867fbc414d9221276419"
).map(colors);
var PiYG = ramp$1(scheme$o);
var scheme$n = new Array(3).concat(
"998ec3f7f7f7f1a340",
"5e3c99b2abd2fdb863e66101",
"5e3c99b2abd2f7f7f7fdb863e66101",
"542788998ec3d8daebfee0b6f1a340b35806",
"542788998ec3d8daebf7f7f7fee0b6f1a340b35806",
"5427888073acb2abd2d8daebfee0b6fdb863e08214b35806",
"5427888073acb2abd2d8daebf7f7f7fee0b6fdb863e08214b35806",
"2d004b5427888073acb2abd2d8daebfee0b6fdb863e08214b358067f3b08",
"2d004b5427888073acb2abd2d8daebf7f7f7fee0b6fdb863e08214b358067f3b08"
).map(colors);
var PuOr = ramp$1(scheme$n);
var scheme$m = new Array(3).concat(
"ef8a62f7f7f767a9cf",
"ca0020f4a58292c5de0571b0",
"ca0020f4a582f7f7f792c5de0571b0",
"b2182bef8a62fddbc7d1e5f067a9cf2166ac",
"b2182bef8a62fddbc7f7f7f7d1e5f067a9cf2166ac",
"b2182bd6604df4a582fddbc7d1e5f092c5de4393c32166ac",
"b2182bd6604df4a582fddbc7f7f7f7d1e5f092c5de4393c32166ac",
"67001fb2182bd6604df4a582fddbc7d1e5f092c5de4393c32166ac053061",
"67001fb2182bd6604df4a582fddbc7f7f7f7d1e5f092c5de4393c32166ac053061"
).map(colors);
var RdBu = ramp$1(scheme$m);
var scheme$l = new Array(3).concat(
"ef8a62ffffff999999",
"ca0020f4a582bababa404040",
"ca0020f4a582ffffffbababa404040",
"b2182bef8a62fddbc7e0e0e09999994d4d4d",
"b2182bef8a62fddbc7ffffffe0e0e09999994d4d4d",
"b2182bd6604df4a582fddbc7e0e0e0bababa8787874d4d4d",
"b2182bd6604df4a582fddbc7ffffffe0e0e0bababa8787874d4d4d",
"67001fb2182bd6604df4a582fddbc7e0e0e0bababa8787874d4d4d1a1a1a",
"67001fb2182bd6604df4a582fddbc7ffffffe0e0e0bababa8787874d4d4d1a1a1a"
).map(colors);
var RdGy = ramp$1(scheme$l);
var scheme$k = new Array(3).concat(
"fc8d59ffffbf91bfdb",
"d7191cfdae61abd9e92c7bb6",
"d7191cfdae61ffffbfabd9e92c7bb6",
"d73027fc8d59fee090e0f3f891bfdb4575b4",
"d73027fc8d59fee090ffffbfe0f3f891bfdb4575b4",
"d73027f46d43fdae61fee090e0f3f8abd9e974add14575b4",
"d73027f46d43fdae61fee090ffffbfe0f3f8abd9e974add14575b4",
"a50026d73027f46d43fdae61fee090e0f3f8abd9e974add14575b4313695",
"a50026d73027f46d43fdae61fee090ffffbfe0f3f8abd9e974add14575b4313695"
).map(colors);
var RdYlBu = ramp$1(scheme$k);
var scheme$j = new Array(3).concat(
"fc8d59ffffbf91cf60",
"d7191cfdae61a6d96a1a9641",
"d7191cfdae61ffffbfa6d96a1a9641",
"d73027fc8d59fee08bd9ef8b91cf601a9850",
"d73027fc8d59fee08bffffbfd9ef8b91cf601a9850",
"d73027f46d43fdae61fee08bd9ef8ba6d96a66bd631a9850",
"d73027f46d43fdae61fee08bffffbfd9ef8ba6d96a66bd631a9850",
"a50026d73027f46d43fdae61fee08bd9ef8ba6d96a66bd631a9850006837",
"a50026d73027f46d43fdae61fee08bffffbfd9ef8ba6d96a66bd631a9850006837"
).map(colors);
var RdYlGn = ramp$1(scheme$j);
var scheme$i = new Array(3).concat(
"fc8d59ffffbf99d594",
"d7191cfdae61abdda42b83ba",
"d7191cfdae61ffffbfabdda42b83ba",
"d53e4ffc8d59fee08be6f59899d5943288bd",
"d53e4ffc8d59fee08bffffbfe6f59899d5943288bd",
"d53e4ff46d43fdae61fee08be6f598abdda466c2a53288bd",
"d53e4ff46d43fdae61fee08bffffbfe6f598abdda466c2a53288bd",
"9e0142d53e4ff46d43fdae61fee08be6f598abdda466c2a53288bd5e4fa2",
"9e0142d53e4ff46d43fdae61fee08bffffbfe6f598abdda466c2a53288bd5e4fa2"
).map(colors);
var Spectral = ramp$1(scheme$i);
var scheme$h = new Array(3).concat(
"e5f5f999d8c92ca25f",
"edf8fbb2e2e266c2a4238b45",
"edf8fbb2e2e266c2a42ca25f006d2c",
"edf8fbccece699d8c966c2a42ca25f006d2c",
"edf8fbccece699d8c966c2a441ae76238b45005824",
"f7fcfde5f5f9ccece699d8c966c2a441ae76238b45005824",
"f7fcfde5f5f9ccece699d8c966c2a441ae76238b45006d2c00441b"
).map(colors);
var BuGn = ramp$1(scheme$h);
var scheme$g = new Array(3).concat(
"e0ecf49ebcda8856a7",
"edf8fbb3cde38c96c688419d",
"edf8fbb3cde38c96c68856a7810f7c",
"edf8fbbfd3e69ebcda8c96c68856a7810f7c",
"edf8fbbfd3e69ebcda8c96c68c6bb188419d6e016b",
"f7fcfde0ecf4bfd3e69ebcda8c96c68c6bb188419d6e016b",
"f7fcfde0ecf4bfd3e69ebcda8c96c68c6bb188419d810f7c4d004b"
).map(colors);
var BuPu = ramp$1(scheme$g);
var scheme$f = new Array(3).concat(
"e0f3dba8ddb543a2ca",
"f0f9e8bae4bc7bccc42b8cbe",
"f0f9e8bae4bc7bccc443a2ca0868ac",
"f0f9e8ccebc5a8ddb57bccc443a2ca0868ac",
"f0f9e8ccebc5a8ddb57bccc44eb3d32b8cbe08589e",
"f7fcf0e0f3dbccebc5a8ddb57bccc44eb3d32b8cbe08589e",
"f7fcf0e0f3dbccebc5a8ddb57bccc44eb3d32b8cbe0868ac084081"
).map(colors);
var GnBu = ramp$1(scheme$f);
var scheme$e = new Array(3).concat(
"fee8c8fdbb84e34a33",
"fef0d9fdcc8afc8d59d7301f",
"fef0d9fdcc8afc8d59e34a33b30000",
"fef0d9fdd49efdbb84fc8d59e34a33b30000",
"fef0d9fdd49efdbb84fc8d59ef6548d7301f990000",
"fff7ecfee8c8fdd49efdbb84fc8d59ef6548d7301f990000",
"fff7ecfee8c8fdd49efdbb84fc8d59ef6548d7301fb300007f0000"
).map(colors);
var OrRd = ramp$1(scheme$e);
var scheme$d = new Array(3).concat(
"ece2f0a6bddb1c9099",
"f6eff7bdc9e167a9cf02818a",
"f6eff7bdc9e167a9cf1c9099016c59",
"f6eff7d0d1e6a6bddb67a9cf1c9099016c59",
"f6eff7d0d1e6a6bddb67a9cf3690c002818a016450",
"fff7fbece2f0d0d1e6a6bddb67a9cf3690c002818a016450",
"fff7fbece2f0d0d1e6a6bddb67a9cf3690c002818a016c59014636"
).map(colors);
var PuBuGn = ramp$1(scheme$d);
var scheme$c = new Array(3).concat(
"ece7f2a6bddb2b8cbe",
"f1eef6bdc9e174a9cf0570b0",
"f1eef6bdc9e174a9cf2b8cbe045a8d",
"f1eef6d0d1e6a6bddb74a9cf2b8cbe045a8d",
"f1eef6d0d1e6a6bddb74a9cf3690c00570b0034e7b",
"fff7fbece7f2d0d1e6a6bddb74a9cf3690c00570b0034e7b",
"fff7fbece7f2d0d1e6a6bddb74a9cf3690c00570b0045a8d023858"
).map(colors);
var PuBu = ramp$1(scheme$c);
var scheme$b = new Array(3).concat(
"e7e1efc994c7dd1c77",
"f1eef6d7b5d8df65b0ce1256",
"f1eef6d7b5d8df65b0dd1c77980043",
"f1eef6d4b9dac994c7df65b0dd1c77980043",
"f1eef6d4b9dac994c7df65b0e7298ace125691003f",
"f7f4f9e7e1efd4b9dac994c7df65b0e7298ace125691003f",
"f7f4f9e7e1efd4b9dac994c7df65b0e7298ace125698004367001f"
).map(colors);
var PuRd = ramp$1(scheme$b);
var scheme$a = new Array(3).concat(
"fde0ddfa9fb5c51b8a",
"feebe2fbb4b9f768a1ae017e",
"feebe2fbb4b9f768a1c51b8a7a0177",
"feebe2fcc5c0fa9fb5f768a1c51b8a7a0177",
"feebe2fcc5c0fa9fb5f768a1dd3497ae017e7a0177",
"fff7f3fde0ddfcc5c0fa9fb5f768a1dd3497ae017e7a0177",
"fff7f3fde0ddfcc5c0fa9fb5f768a1dd3497ae017e7a017749006a"
).map(colors);
var RdPu = ramp$1(scheme$a);
var scheme$9 = new Array(3).concat(
"edf8b17fcdbb2c7fb8",
"ffffcca1dab441b6c4225ea8",
"ffffcca1dab441b6c42c7fb8253494",
"ffffccc7e9b47fcdbb41b6c42c7fb8253494",
"ffffccc7e9b47fcdbb41b6c41d91c0225ea80c2c84",
"ffffd9edf8b1c7e9b47fcdbb41b6c41d91c0225ea80c2c84",
"ffffd9edf8b1c7e9b47fcdbb41b6c41d91c0225ea8253494081d58"
).map(colors);
var YlGnBu = ramp$1(scheme$9);
var scheme$8 = new Array(3).concat(
"f7fcb9addd8e31a354",
"ffffccc2e69978c679238443",
"ffffccc2e69978c67931a354006837",
"ffffccd9f0a3addd8e78c67931a354006837",
"ffffccd9f0a3addd8e78c67941ab5d238443005a32",
"ffffe5f7fcb9d9f0a3addd8e78c67941ab5d238443005a32",
"ffffe5f7fcb9d9f0a3addd8e78c67941ab5d238443006837004529"
).map(colors);
var YlGn = ramp$1(scheme$8);
var scheme$7 = new Array(3).concat(
"fff7bcfec44fd95f0e",
"ffffd4fed98efe9929cc4c02",
"ffffd4fed98efe9929d95f0e993404",
"ffffd4fee391fec44ffe9929d95f0e993404",
"ffffd4fee391fec44ffe9929ec7014cc4c028c2d04",
"ffffe5fff7bcfee391fec44ffe9929ec7014cc4c028c2d04",
"ffffe5fff7bcfee391fec44ffe9929ec7014cc4c02993404662506"
).map(colors);
var YlOrBr = ramp$1(scheme$7);
var scheme$6 = new Array(3).concat(
"ffeda0feb24cf03b20",
"ffffb2fecc5cfd8d3ce31a1c",
"ffffb2fecc5cfd8d3cf03b20bd0026",
"ffffb2fed976feb24cfd8d3cf03b20bd0026",
"ffffb2fed976feb24cfd8d3cfc4e2ae31a1cb10026",
"ffffccffeda0fed976feb24cfd8d3cfc4e2ae31a1cb10026",
"ffffccffeda0fed976feb24cfd8d3cfc4e2ae31a1cbd0026800026"
).map(colors);
var YlOrRd = ramp$1(scheme$6);
var scheme$5 = new Array(3).concat(
"deebf79ecae13182bd",
"eff3ffbdd7e76baed62171b5",
"eff3ffbdd7e76baed63182bd08519c",
"eff3ffc6dbef9ecae16baed63182bd08519c",
"eff3ffc6dbef9ecae16baed64292c62171b5084594",
"f7fbffdeebf7c6dbef9ecae16baed64292c62171b5084594",
"f7fbffdeebf7c6dbef9ecae16baed64292c62171b508519c08306b"
).map(colors);
var Blues = ramp$1(scheme$5);
var scheme$4 = new Array(3).concat(
"e5f5e0a1d99b31a354",
"edf8e9bae4b374c476238b45",
"edf8e9bae4b374c47631a354006d2c",
"edf8e9c7e9c0a1d99b74c47631a354006d2c",
"edf8e9c7e9c0a1d99b74c47641ab5d238b45005a32",
"f7fcf5e5f5e0c7e9c0a1d99b74c47641ab5d238b45005a32",
"f7fcf5e5f5e0c7e9c0a1d99b74c47641ab5d238b45006d2c00441b"
).map(colors);
var Greens = ramp$1(scheme$4);
var scheme$3 = new Array(3).concat(
"f0f0f0bdbdbd636363",
"f7f7f7cccccc969696525252",
"f7f7f7cccccc969696636363252525",
"f7f7f7d9d9d9bdbdbd969696636363252525",
"f7f7f7d9d9d9bdbdbd969696737373525252252525",
"fffffff0f0f0d9d9d9bdbdbd969696737373525252252525",
"fffffff0f0f0d9d9d9bdbdbd969696737373525252252525000000"
).map(colors);
var Greys = ramp$1(scheme$3);
var scheme$2 = new Array(3).concat(
"efedf5bcbddc756bb1",
"f2f0f7cbc9e29e9ac86a51a3",
"f2f0f7cbc9e29e9ac8756bb154278f",
"f2f0f7dadaebbcbddc9e9ac8756bb154278f",
"f2f0f7dadaebbcbddc9e9ac8807dba6a51a34a1486",
"fcfbfdefedf5dadaebbcbddc9e9ac8807dba6a51a34a1486",
"fcfbfdefedf5dadaebbcbddc9e9ac8807dba6a51a354278f3f007d"
).map(colors);
var Purples = ramp$1(scheme$2);
var scheme$1 = new Array(3).concat(
"fee0d2fc9272de2d26",
"fee5d9fcae91fb6a4acb181d",
"fee5d9fcae91fb6a4ade2d26a50f15",
"fee5d9fcbba1fc9272fb6a4ade2d26a50f15",
"fee5d9fcbba1fc9272fb6a4aef3b2ccb181d99000d",
"fff5f0fee0d2fcbba1fc9272fb6a4aef3b2ccb181d99000d",
"fff5f0fee0d2fcbba1fc9272fb6a4aef3b2ccb181da50f1567000d"
).map(colors);
var Reds = ramp$1(scheme$1);
var scheme = new Array(3).concat(
"fee6cefdae6be6550d",
"feeddefdbe85fd8d3cd94701",
"feeddefdbe85fd8d3ce6550da63603",
"feeddefdd0a2fdae6bfd8d3ce6550da63603",
"feeddefdd0a2fdae6bfd8d3cf16913d948018c2d04",
"fff5ebfee6cefdd0a2fdae6bfd8d3cf16913d948018c2d04",
"fff5ebfee6cefdd0a2fdae6bfd8d3cf16913d94801a636037f2704"
).map(colors);
var Oranges = ramp$1(scheme);
function cividis(t) {
t = Math.max(0, Math.min(1, t));
return "rgb("
+ Math.max(0, Math.min(255, Math.round(-4.54 - t * (35.34 - t * (2381.73 - t * (6402.7 - t * (7024.72 - t * 2710.57))))))) + ", "
+ Math.max(0, Math.min(255, Math.round(32.49 + t * (170.73 + t * (52.82 - t * (131.46 - t * (176.58 - t * 67.37))))))) + ", "
+ Math.max(0, Math.min(255, Math.round(81.24 + t * (442.36 - t * (2482.43 - t * (6167.24 - t * (6614.94 - t * 2475.67)))))))
+ ")";
}
var cubehelix = cubehelixLong(cubehelix$3(300, 0.5, 0.0), cubehelix$3(-240, 0.5, 1.0));
var warm = cubehelixLong(cubehelix$3(-100, 0.75, 0.35), cubehelix$3(80, 1.50, 0.8));
var cool = cubehelixLong(cubehelix$3(260, 0.75, 0.35), cubehelix$3(80, 1.50, 0.8));
var c$2 = cubehelix$3();
function rainbow(t) {
if (t < 0 || t > 1) t -= Math.floor(t);
var ts = Math.abs(t - 0.5);
c$2.h = 360 * t - 100;
c$2.s = 1.5 - 1.5 * ts;
c$2.l = 0.8 - 0.9 * ts;
return c$2 + "";
}
var c$1 = rgb(),
pi_1_3 = Math.PI / 3,
pi_2_3 = Math.PI * 2 / 3;
function sinebow(t) {
var x;
t = (0.5 - t) * Math.PI;
c$1.r = 255 * (x = Math.sin(t)) * x;
c$1.g = 255 * (x = Math.sin(t + pi_1_3)) * x;
c$1.b = 255 * (x = Math.sin(t + pi_2_3)) * x;
return c$1 + "";
}
function turbo(t) {
t = Math.max(0, Math.min(1, t));
return "rgb("
+ Math.max(0, Math.min(255, Math.round(34.61 + t * (1172.33 - t * (10793.56 - t * (33300.12 - t * (38394.49 - t * 14825.05))))))) + ", "
+ Math.max(0, Math.min(255, Math.round(23.31 + t * (557.33 + t * (1225.33 - t * (3574.96 - t * (1073.77 + t * 707.56))))))) + ", "
+ Math.max(0, Math.min(255, Math.round(27.2 + t * (3211.1 - t * (15327.97 - t * (27814 - t * (22569.18 - t * 6838.66)))))))
+ ")";
}
function ramp(range) {
var n = range.length;
return function(t) {
return range[Math.max(0, Math.min(n - 1, Math.floor(t * n)))];
};
}
var viridis = ramp(colors("44015444025645045745055946075a46085c460a5d460b5e470d60470e6147106347116447136548146748166848176948186a481a6c481b6d481c6e481d6f481f70482071482173482374482475482576482677482878482979472a7a472c7a472d7b472e7c472f7d46307e46327e46337f463480453581453781453882443983443a83443b84433d84433e85423f854240864241864142874144874045884046883f47883f48893e49893e4a893e4c8a3d4d8a3d4e8a3c4f8a3c508b3b518b3b528b3a538b3a548c39558c39568c38588c38598c375a8c375b8d365c8d365d8d355e8d355f8d34608d34618d33628d33638d32648e32658e31668e31678e31688e30698e306a8e2f6b8e2f6c8e2e6d8e2e6e8e2e6f8e2d708e2d718e2c718e2c728e2c738e2b748e2b758e2a768e2a778e2a788e29798e297a8e297b8e287c8e287d8e277e8e277f8e27808e26818e26828e26828e25838e25848e25858e24868e24878e23888e23898e238a8d228b8d228c8d228d8d218e8d218f8d21908d21918c20928c20928c20938c1f948c1f958b1f968b1f978b1f988b1f998a1f9a8a1e9b8a1e9c891e9d891f9e891f9f881fa0881fa1881fa1871fa28720a38620a48621a58521a68522a78522a88423a98324aa8325ab8225ac8226ad8127ad8128ae8029af7f2ab07f2cb17e2db27d2eb37c2fb47c31b57b32b67a34b67935b77937b87838b9773aba763bbb753dbc743fbc7340bd7242be7144bf7046c06f48c16e4ac16d4cc26c4ec36b50c46a52c56954c56856c66758c7655ac8645cc8635ec96260ca6063cb5f65cb5e67cc5c69cd5b6ccd5a6ece5870cf5773d05675d05477d1537ad1517cd2507fd34e81d34d84d44b86d54989d5488bd6468ed64590d74393d74195d84098d83e9bd93c9dd93ba0da39a2da37a5db36a8db34aadc32addc30b0dd2fb2dd2db5de2bb8de29bade28bddf26c0df25c2df23c5e021c8e020cae11fcde11dd0e11cd2e21bd5e21ad8e219dae319dde318dfe318e2e418e5e419e7e419eae51aece51befe51cf1e51df4e61ef6e620f8e621fbe723fde725"));
var magma = ramp(colors("00000401000501010601010802010902020b02020d03030f03031204041405041606051806051a07061c08071e0907200a08220b09240c09260d0a290e0b2b100b2d110c2f120d31130d34140e36150e38160f3b180f3d19103f1a10421c10441d11471e114920114b21114e22115024125325125527125829115a2a115c2c115f2d11612f116331116533106734106936106b38106c390f6e3b0f703d0f713f0f72400f74420f75440f764510774710784910784a10794c117a4e117b4f127b51127c52137c54137d56147d57157e59157e5a167e5c167f5d177f5f187f601880621980641a80651a80671b80681c816a1c816b1d816d1d816e1e81701f81721f817320817521817621817822817922827b23827c23827e24828025828125818326818426818627818827818928818b29818c29818e2a81902a81912b81932b80942c80962c80982d80992d809b2e7f9c2e7f9e2f7fa02f7fa1307ea3307ea5317ea6317da8327daa337dab337cad347cae347bb0357bb2357bb3367ab5367ab73779b83779ba3878bc3978bd3977bf3a77c03a76c23b75c43c75c53c74c73d73c83e73ca3e72cc3f71cd4071cf4070d0416fd2426fd3436ed5446dd6456cd8456cd9466bdb476adc4869de4968df4a68e04c67e24d66e34e65e44f64e55064e75263e85362e95462ea5661eb5760ec5860ed5a5fee5b5eef5d5ef05f5ef1605df2625df2645cf3655cf4675cf4695cf56b5cf66c5cf66e5cf7705cf7725cf8745cf8765cf9785df9795df97b5dfa7d5efa7f5efa815ffb835ffb8560fb8761fc8961fc8a62fc8c63fc8e64fc9065fd9266fd9467fd9668fd9869fd9a6afd9b6bfe9d6cfe9f6dfea16efea36ffea571fea772fea973feaa74feac76feae77feb078feb27afeb47bfeb67cfeb77efeb97ffebb81febd82febf84fec185fec287fec488fec68afec88cfeca8dfecc8ffecd90fecf92fed194fed395fed597fed799fed89afdda9cfddc9efddea0fde0a1fde2a3fde3a5fde5a7fde7a9fde9aafdebacfcecaefceeb0fcf0b2fcf2b4fcf4b6fcf6b8fcf7b9fcf9bbfcfbbdfcfdbf"));
var inferno = ramp(colors("00000401000501010601010802010a02020c02020e03021004031204031405041706041907051b08051d09061f0a07220b07240c08260d08290e092b10092d110a30120a32140b34150b37160b39180c3c190c3e1b0c411c0c431e0c451f0c48210c4a230c4c240c4f260c51280b53290b552b0b572d0b592f0a5b310a5c320a5e340a5f3609613809623909633b09643d09653e0966400a67420a68440a68450a69470b6a490b6a4a0c6b4c0c6b4d0d6c4f0d6c510e6c520e6d540f6d550f6d57106e59106e5a116e5c126e5d126e5f136e61136e62146e64156e65156e67166e69166e6a176e6c186e6d186e6f196e71196e721a6e741a6e751b6e771c6d781c6d7a1d6d7c1d6d7d1e6d7f1e6c801f6c82206c84206b85216b87216b88226a8a226a8c23698d23698f24699025689225689326679526679727669827669a28659b29649d29649f2a63a02a63a22b62a32c61a52c60a62d60a82e5fa92e5eab2f5ead305dae305cb0315bb1325ab3325ab43359b63458b73557b93556ba3655bc3754bd3853bf3952c03a51c13a50c33b4fc43c4ec63d4dc73e4cc83f4bca404acb4149cc4248ce4347cf4446d04545d24644d34743d44842d54a41d74b3fd84c3ed94d3dda4e3cdb503bdd513ade5238df5337e05536e15635e25734e35933e45a31e55c30e65d2fe75e2ee8602de9612bea632aeb6429eb6628ec6726ed6925ee6a24ef6c23ef6e21f06f20f1711ff1731df2741cf3761bf37819f47918f57b17f57d15f67e14f68013f78212f78410f8850ff8870ef8890cf98b0bf98c0af98e09fa9008fa9207fa9407fb9606fb9706fb9906fb9b06fb9d07fc9f07fca108fca309fca50afca60cfca80dfcaa0ffcac11fcae12fcb014fcb216fcb418fbb61afbb81dfbba1ffbbc21fbbe23fac026fac228fac42afac62df9c72ff9c932f9cb35f8cd37f8cf3af7d13df7d340f6d543f6d746f5d949f5db4cf4dd4ff4df53f4e156f3e35af3e55df2e661f2e865f2ea69f1ec6df1ed71f1ef75f1f179f2f27df2f482f3f586f3f68af4f88ef5f992f6fa96f8fb9af9fc9dfafda1fcffa4"));
var plasma = ramp(colors("0d088710078813078916078a19068c1b068d1d068e20068f2206902406912605912805922a05932c05942e05952f059631059733059735049837049938049a3a049a3c049b3e049c3f049c41049d43039e44039e46039f48039f4903a04b03a14c02a14e02a25002a25102a35302a35502a45601a45801a45901a55b01a55c01a65e01a66001a66100a76300a76400a76600a76700a86900a86a00a86c00a86e00a86f00a87100a87201a87401a87501a87701a87801a87a02a87b02a87d03a87e03a88004a88104a78305a78405a78606a68707a68808a68a09a58b0aa58d0ba58e0ca48f0da4910ea3920fa39410a29511a19613a19814a099159f9a169f9c179e9d189d9e199da01a9ca11b9ba21d9aa31e9aa51f99a62098a72197a82296aa2395ab2494ac2694ad2793ae2892b02991b12a90b22b8fb32c8eb42e8db52f8cb6308bb7318ab83289ba3388bb3488bc3587bd3786be3885bf3984c03a83c13b82c23c81c33d80c43e7fc5407ec6417dc7427cc8437bc9447aca457acb4679cc4778cc4977cd4a76ce4b75cf4c74d04d73d14e72d24f71d35171d45270d5536fd5546ed6556dd7566cd8576bd9586ada5a6ada5b69db5c68dc5d67dd5e66de5f65de6164df6263e06363e16462e26561e26660e3685fe4695ee56a5de56b5de66c5ce76e5be76f5ae87059e97158e97257ea7457eb7556eb7655ec7754ed7953ed7a52ee7b51ef7c51ef7e50f07f4ff0804ef1814df1834cf2844bf3854bf3874af48849f48948f58b47f58c46f68d45f68f44f79044f79143f79342f89441f89540f9973ff9983ef99a3efa9b3dfa9c3cfa9e3bfb9f3afba139fba238fca338fca537fca636fca835fca934fdab33fdac33fdae32fdaf31fdb130fdb22ffdb42ffdb52efeb72dfeb82cfeba2cfebb2bfebd2afebe2afec029fdc229fdc328fdc527fdc627fdc827fdca26fdcb26fccd25fcce25fcd025fcd225fbd324fbd524fbd724fad824fada24f9dc24f9dd25f8df25f8e125f7e225f7e425f6e626f6e826f5e926f5eb27f4ed27f3ee27f3f027f2f227f1f426f1f525f0f724f0f921"));
function constant$1(x) {
return function constant() {
return x;
};
}
const abs = Math.abs;
const atan2 = Math.atan2;
const cos = Math.cos;
const max = Math.max;
const min = Math.min;
const sin = Math.sin;
const sqrt = Math.sqrt;
const epsilon = 1e-12;
const pi = Math.PI;
const halfPi = pi / 2;
const tau = 2 * pi;
function acos(x) {
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
}
function asin(x) {
return x >= 1 ? halfPi : x <= -1 ? -halfPi : Math.asin(x);
}
function withPath(shape) {
let digits = 3;
shape.digits = function(_) {
if (!arguments.length) return digits;
if (_ == null) {
digits = null;
} else {
const d = Math.floor(_);
if (!(d >= 0)) throw new RangeError(`invalid digits: ${_}`);
digits = d;
}
return shape;
};
return () => new Path$1(digits);
}
function arcInnerRadius(d) {
return d.innerRadius;
}
function arcOuterRadius(d) {
return d.outerRadius;
}
function arcStartAngle(d) {
return d.startAngle;
}
function arcEndAngle(d) {
return d.endAngle;
}
function arcPadAngle(d) {
return d && d.padAngle; // Note: optional!
}
function intersect(x0, y0, x1, y1, x2, y2, x3, y3) {
var x10 = x1 - x0, y10 = y1 - y0,
x32 = x3 - x2, y32 = y3 - y2,
t = y32 * x10 - x32 * y10;
if (t * t < epsilon) return;
t = (x32 * (y0 - y2) - y32 * (x0 - x2)) / t;
return [x0 + t * x10, y0 + t * y10];
}
// Compute perpendicular offset line of length rc.
// http://mathworld.wolfram.com/Circle-LineIntersection.html
function cornerTangents(x0, y0, x1, y1, r1, rc, cw) {
var x01 = x0 - x1,
y01 = y0 - y1,
lo = (cw ? rc : -rc) / sqrt(x01 * x01 + y01 * y01),
ox = lo * y01,
oy = -lo * x01,
x11 = x0 + ox,
y11 = y0 + oy,
x10 = x1 + ox,
y10 = y1 + oy,
x00 = (x11 + x10) / 2,
y00 = (y11 + y10) / 2,
dx = x10 - x11,
dy = y10 - y11,
d2 = dx * dx + dy * dy,
r = r1 - rc,
D = x11 * y10 - x10 * y11,
d = (dy < 0 ? -1 : 1) * sqrt(max(0, r * r * d2 - D * D)),
cx0 = (D * dy - dx * d) / d2,
cy0 = (-D * dx - dy * d) / d2,
cx1 = (D * dy + dx * d) / d2,
cy1 = (-D * dx + dy * d) / d2,
dx0 = cx0 - x00,
dy0 = cy0 - y00,
dx1 = cx1 - x00,
dy1 = cy1 - y00;
// Pick the closer of the two intersection points.
// TODO Is there a faster way to determine which intersection to use?
if (dx0 * dx0 + dy0 * dy0 > dx1 * dx1 + dy1 * dy1) cx0 = cx1, cy0 = cy1;
return {
cx: cx0,
cy: cy0,
x01: -ox,
y01: -oy,
x11: cx0 * (r1 / r - 1),
y11: cy0 * (r1 / r - 1)
};
}
function arc() {
var innerRadius = arcInnerRadius,
outerRadius = arcOuterRadius,
cornerRadius = constant$1(0),
padRadius = null,
startAngle = arcStartAngle,
endAngle = arcEndAngle,
padAngle = arcPadAngle,
context = null,
path = withPath(arc);
function arc() {
var buffer,
r,
r0 = +innerRadius.apply(this, arguments),
r1 = +outerRadius.apply(this, arguments),
a0 = startAngle.apply(this, arguments) - halfPi,
a1 = endAngle.apply(this, arguments) - halfPi,
da = abs(a1 - a0),
cw = a1 > a0;
if (!context) context = buffer = path();
// Ensure that the outer radius is always larger than the inner radius.
if (r1 < r0) r = r1, r1 = r0, r0 = r;
// Is it a point?
if (!(r1 > epsilon)) context.moveTo(0, 0);
// Or is it a circle or annulus?
else if (da > tau - epsilon) {
context.moveTo(r1 * cos(a0), r1 * sin(a0));
context.arc(0, 0, r1, a0, a1, !cw);
if (r0 > epsilon) {
context.moveTo(r0 * cos(a1), r0 * sin(a1));
context.arc(0, 0, r0, a1, a0, cw);
}
}
// Or is it a circular or annular sector?
else {
var a01 = a0,
a11 = a1,
a00 = a0,
a10 = a1,
da0 = da,
da1 = da,
ap = padAngle.apply(this, arguments) / 2,
rp = (ap > epsilon) && (padRadius ? +padRadius.apply(this, arguments) : sqrt(r0 * r0 + r1 * r1)),
rc = min(abs(r1 - r0) / 2, +cornerRadius.apply(this, arguments)),
rc0 = rc,
rc1 = rc,
t0,
t1;
// Apply padding? Note that since r1 ≥ r0, da1 ≥ da0.
if (rp > epsilon) {
var p0 = asin(rp / r0 * sin(ap)),
p1 = asin(rp / r1 * sin(ap));
if ((da0 -= p0 * 2) > epsilon) p0 *= (cw ? 1 : -1), a00 += p0, a10 -= p0;
else da0 = 0, a00 = a10 = (a0 + a1) / 2;
if ((da1 -= p1 * 2) > epsilon) p1 *= (cw ? 1 : -1), a01 += p1, a11 -= p1;
else da1 = 0, a01 = a11 = (a0 + a1) / 2;
}
var x01 = r1 * cos(a01),
y01 = r1 * sin(a01),
x10 = r0 * cos(a10),
y10 = r0 * sin(a10);
// Apply rounded corners?
if (rc > epsilon) {
var x11 = r1 * cos(a11),
y11 = r1 * sin(a11),
x00 = r0 * cos(a00),
y00 = r0 * sin(a00),
oc;
// Restrict the corner radius according to the sector angle. If this
// intersection fails, its probably because the arc is too small, so
// disable the corner radius entirely.
if (da < pi) {
if (oc = intersect(x01, y01, x00, y00, x11, y11, x10, y10)) {
var ax = x01 - oc[0],
ay = y01 - oc[1],
bx = x11 - oc[0],
by = y11 - oc[1],
kc = 1 / sin(acos((ax * bx + ay * by) / (sqrt(ax * ax + ay * ay) * sqrt(bx * bx + by * by))) / 2),
lc = sqrt(oc[0] * oc[0] + oc[1] * oc[1]);
rc0 = min(rc, (r0 - lc) / (kc - 1));
rc1 = min(rc, (r1 - lc) / (kc + 1));
} else {
rc0 = rc1 = 0;
}
}
}
// Is the sector collapsed to a line?
if (!(da1 > epsilon)) context.moveTo(x01, y01);
// Does the sectors outer ring have rounded corners?
else if (rc1 > epsilon) {
t0 = cornerTangents(x00, y00, x01, y01, r1, rc1, cw);
t1 = cornerTangents(x11, y11, x10, y10, r1, rc1, cw);
context.moveTo(t0.cx + t0.x01, t0.cy + t0.y01);
// Have the corners merged?
if (rc1 < rc) context.arc(t0.cx, t0.cy, rc1, atan2(t0.y01, t0.x01), atan2(t1.y01, t1.x01), !cw);
// Otherwise, draw the two corners and the ring.
else {
context.arc(t0.cx, t0.cy, rc1, atan2(t0.y01, t0.x01), atan2(t0.y11, t0.x11), !cw);
context.arc(0, 0, r1, atan2(t0.cy + t0.y11, t0.cx + t0.x11), atan2(t1.cy + t1.y11, t1.cx + t1.x11), !cw);
context.arc(t1.cx, t1.cy, rc1, atan2(t1.y11, t1.x11), atan2(t1.y01, t1.x01), !cw);
}
}
// Or is the outer ring just a circular arc?
else context.moveTo(x01, y01), context.arc(0, 0, r1, a01, a11, !cw);
// Is there no inner ring, and its a circular sector?
// Or perhaps its an annular sector collapsed due to padding?
if (!(r0 > epsilon) || !(da0 > epsilon)) context.lineTo(x10, y10);
// Does the sectors inner ring (or point) have rounded corners?
else if (rc0 > epsilon) {
t0 = cornerTangents(x10, y10, x11, y11, r0, -rc0, cw);
t1 = cornerTangents(x01, y01, x00, y00, r0, -rc0, cw);
context.lineTo(t0.cx + t0.x01, t0.cy + t0.y01);
// Have the corners merged?
if (rc0 < rc) context.arc(t0.cx, t0.cy, rc0, atan2(t0.y01, t0.x01), atan2(t1.y01, t1.x01), !cw);
// Otherwise, draw the two corners and the ring.
else {
context.arc(t0.cx, t0.cy, rc0, atan2(t0.y01, t0.x01), atan2(t0.y11, t0.x11), !cw);
context.arc(0, 0, r0, atan2(t0.cy + t0.y11, t0.cx + t0.x11), atan2(t1.cy + t1.y11, t1.cx + t1.x11), cw);
context.arc(t1.cx, t1.cy, rc0, atan2(t1.y11, t1.x11), atan2(t1.y01, t1.x01), !cw);
}
}
// Or is the inner ring just a circular arc?
else context.arc(0, 0, r0, a10, a00, cw);
}
context.closePath();
if (buffer) return context = null, buffer + "" || null;
}
arc.centroid = function() {
var r = (+innerRadius.apply(this, arguments) + +outerRadius.apply(this, arguments)) / 2,
a = (+startAngle.apply(this, arguments) + +endAngle.apply(this, arguments)) / 2 - pi / 2;
return [cos(a) * r, sin(a) * r];
};
arc.innerRadius = function(_) {
return arguments.length ? (innerRadius = typeof _ === "function" ? _ : constant$1(+_), arc) : innerRadius;
};
arc.outerRadius = function(_) {
return arguments.length ? (outerRadius = typeof _ === "function" ? _ : constant$1(+_), arc) : outerRadius;
};
arc.cornerRadius = function(_) {
return arguments.length ? (cornerRadius = typeof _ === "function" ? _ : constant$1(+_), arc) : cornerRadius;
};
arc.padRadius = function(_) {
return arguments.length ? (padRadius = _ == null ? null : typeof _ === "function" ? _ : constant$1(+_), arc) : padRadius;
};
arc.startAngle = function(_) {
return arguments.length ? (startAngle = typeof _ === "function" ? _ : constant$1(+_), arc) : startAngle;
};
arc.endAngle = function(_) {
return arguments.length ? (endAngle = typeof _ === "function" ? _ : constant$1(+_), arc) : endAngle;
};
arc.padAngle = function(_) {
return arguments.length ? (padAngle = typeof _ === "function" ? _ : constant$1(+_), arc) : padAngle;
};
arc.context = function(_) {
return arguments.length ? ((context = _ == null ? null : _), arc) : context;
};
return arc;
}
var slice = Array.prototype.slice;
function array(x) {
return typeof x === "object" && "length" in x
? x // Array, TypedArray, NodeList, array-like
: Array.from(x); // Map, Set, iterable, string, or anything else
}
function Linear(context) {
this._context = context;
}
Linear.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break;
case 1: this._point = 2; // falls through
default: this._context.lineTo(x, y); break;
}
}
};
function curveLinear(context) {
return new Linear(context);
}
function x(p) {
return p[0];
}
function y(p) {
return p[1];
}
function line(x$1, y$1) {
var defined = constant$1(true),
context = null,
curve = curveLinear,
output = null,
path = withPath(line);
x$1 = typeof x$1 === "function" ? x$1 : (x$1 === undefined) ? x : constant$1(x$1);
y$1 = typeof y$1 === "function" ? y$1 : (y$1 === undefined) ? y : constant$1(y$1);
function line(data) {
var i,
n = (data = array(data)).length,
d,
defined0 = false,
buffer;
if (context == null) output = curve(buffer = path());
for (i = 0; i <= n; ++i) {
if (!(i < n && defined(d = data[i], i, data)) === defined0) {
if (defined0 = !defined0) output.lineStart();
else output.lineEnd();
}
if (defined0) output.point(+x$1(d, i, data), +y$1(d, i, data));
}
if (buffer) return output = null, buffer + "" || null;
}
line.x = function(_) {
return arguments.length ? (x$1 = typeof _ === "function" ? _ : constant$1(+_), line) : x$1;
};
line.y = function(_) {
return arguments.length ? (y$1 = typeof _ === "function" ? _ : constant$1(+_), line) : y$1;
};
line.defined = function(_) {
return arguments.length ? (defined = typeof _ === "function" ? _ : constant$1(!!_), line) : defined;
};
line.curve = function(_) {
return arguments.length ? (curve = _, context != null && (output = curve(context)), line) : curve;
};
line.context = function(_) {
return arguments.length ? (_ == null ? context = output = null : output = curve(context = _), line) : context;
};
return line;
}
function area(x0, y0, y1) {
var x1 = null,
defined = constant$1(true),
context = null,
curve = curveLinear,
output = null,
path = withPath(area);
x0 = typeof x0 === "function" ? x0 : (x0 === undefined) ? x : constant$1(+x0);
y0 = typeof y0 === "function" ? y0 : (y0 === undefined) ? constant$1(0) : constant$1(+y0);
y1 = typeof y1 === "function" ? y1 : (y1 === undefined) ? y : constant$1(+y1);
function area(data) {
var i,
j,
k,
n = (data = array(data)).length,
d,
defined0 = false,
buffer,
x0z = new Array(n),
y0z = new Array(n);
if (context == null) output = curve(buffer = path());
for (i = 0; i <= n; ++i) {
if (!(i < n && defined(d = data[i], i, data)) === defined0) {
if (defined0 = !defined0) {
j = i;
output.areaStart();
output.lineStart();
} else {
output.lineEnd();
output.lineStart();
for (k = i - 1; k >= j; --k) {
output.point(x0z[k], y0z[k]);
}
output.lineEnd();
output.areaEnd();
}
}
if (defined0) {
x0z[i] = +x0(d, i, data), y0z[i] = +y0(d, i, data);
output.point(x1 ? +x1(d, i, data) : x0z[i], y1 ? +y1(d, i, data) : y0z[i]);
}
}
if (buffer) return output = null, buffer + "" || null;
}
function arealine() {
return line().defined(defined).curve(curve).context(context);
}
area.x = function(_) {
return arguments.length ? (x0 = typeof _ === "function" ? _ : constant$1(+_), x1 = null, area) : x0;
};
area.x0 = function(_) {
return arguments.length ? (x0 = typeof _ === "function" ? _ : constant$1(+_), area) : x0;
};
area.x1 = function(_) {
return arguments.length ? (x1 = _ == null ? null : typeof _ === "function" ? _ : constant$1(+_), area) : x1;
};
area.y = function(_) {
return arguments.length ? (y0 = typeof _ === "function" ? _ : constant$1(+_), y1 = null, area) : y0;
};
area.y0 = function(_) {
return arguments.length ? (y0 = typeof _ === "function" ? _ : constant$1(+_), area) : y0;
};
area.y1 = function(_) {
return arguments.length ? (y1 = _ == null ? null : typeof _ === "function" ? _ : constant$1(+_), area) : y1;
};
area.lineX0 =
area.lineY0 = function() {
return arealine().x(x0).y(y0);
};
area.lineY1 = function() {
return arealine().x(x0).y(y1);
};
area.lineX1 = function() {
return arealine().x(x1).y(y0);
};
area.defined = function(_) {
return arguments.length ? (defined = typeof _ === "function" ? _ : constant$1(!!_), area) : defined;
};
area.curve = function(_) {
return arguments.length ? (curve = _, context != null && (output = curve(context)), area) : curve;
};
area.context = function(_) {
return arguments.length ? (_ == null ? context = output = null : output = curve(context = _), area) : context;
};
return area;
}
function descending$1(a, b) {
return b < a ? -1 : b > a ? 1 : b >= a ? 0 : NaN;
}
function identity$1(d) {
return d;
}
function pie() {
var value = identity$1,
sortValues = descending$1,
sort = null,
startAngle = constant$1(0),
endAngle = constant$1(tau),
padAngle = constant$1(0);
function pie(data) {
var i,
n = (data = array(data)).length,
j,
k,
sum = 0,
index = new Array(n),
arcs = new Array(n),
a0 = +startAngle.apply(this, arguments),
da = Math.min(tau, Math.max(-tau, endAngle.apply(this, arguments) - a0)),
a1,
p = Math.min(Math.abs(da) / n, padAngle.apply(this, arguments)),
pa = p * (da < 0 ? -1 : 1),
v;
for (i = 0; i < n; ++i) {
if ((v = arcs[index[i] = i] = +value(data[i], i, data)) > 0) {
sum += v;
}
}
// Optionally sort the arcs by previously-computed values or by data.
if (sortValues != null) index.sort(function(i, j) { return sortValues(arcs[i], arcs[j]); });
else if (sort != null) index.sort(function(i, j) { return sort(data[i], data[j]); });
// Compute the arcs! They are stored in the original data's order.
for (i = 0, k = sum ? (da - n * pa) / sum : 0; i < n; ++i, a0 = a1) {
j = index[i], v = arcs[j], a1 = a0 + (v > 0 ? v * k : 0) + pa, arcs[j] = {
data: data[j],
index: i,
value: v,
startAngle: a0,
endAngle: a1,
padAngle: p
};
}
return arcs;
}
pie.value = function(_) {
return arguments.length ? (value = typeof _ === "function" ? _ : constant$1(+_), pie) : value;
};
pie.sortValues = function(_) {
return arguments.length ? (sortValues = _, sort = null, pie) : sortValues;
};
pie.sort = function(_) {
return arguments.length ? (sort = _, sortValues = null, pie) : sort;
};
pie.startAngle = function(_) {
return arguments.length ? (startAngle = typeof _ === "function" ? _ : constant$1(+_), pie) : startAngle;
};
pie.endAngle = function(_) {
return arguments.length ? (endAngle = typeof _ === "function" ? _ : constant$1(+_), pie) : endAngle;
};
pie.padAngle = function(_) {
return arguments.length ? (padAngle = typeof _ === "function" ? _ : constant$1(+_), pie) : padAngle;
};
return pie;
}
var curveRadialLinear = curveRadial(curveLinear);
function Radial(curve) {
this._curve = curve;
}
Radial.prototype = {
areaStart: function() {
this._curve.areaStart();
},
areaEnd: function() {
this._curve.areaEnd();
},
lineStart: function() {
this._curve.lineStart();
},
lineEnd: function() {
this._curve.lineEnd();
},
point: function(a, r) {
this._curve.point(r * Math.sin(a), r * -Math.cos(a));
}
};
function curveRadial(curve) {
function radial(context) {
return new Radial(curve(context));
}
radial._curve = curve;
return radial;
}
function lineRadial(l) {
var c = l.curve;
l.angle = l.x, delete l.x;
l.radius = l.y, delete l.y;
l.curve = function(_) {
return arguments.length ? c(curveRadial(_)) : c()._curve;
};
return l;
}
function lineRadial$1() {
return lineRadial(line().curve(curveRadialLinear));
}
function areaRadial() {
var a = area().curve(curveRadialLinear),
c = a.curve,
x0 = a.lineX0,
x1 = a.lineX1,
y0 = a.lineY0,
y1 = a.lineY1;
a.angle = a.x, delete a.x;
a.startAngle = a.x0, delete a.x0;
a.endAngle = a.x1, delete a.x1;
a.radius = a.y, delete a.y;
a.innerRadius = a.y0, delete a.y0;
a.outerRadius = a.y1, delete a.y1;
a.lineStartAngle = function() { return lineRadial(x0()); }, delete a.lineX0;
a.lineEndAngle = function() { return lineRadial(x1()); }, delete a.lineX1;
a.lineInnerRadius = function() { return lineRadial(y0()); }, delete a.lineY0;
a.lineOuterRadius = function() { return lineRadial(y1()); }, delete a.lineY1;
a.curve = function(_) {
return arguments.length ? c(curveRadial(_)) : c()._curve;
};
return a;
}
function pointRadial(x, y) {
return [(y = +y) * Math.cos(x -= Math.PI / 2), y * Math.sin(x)];
}
class Bump {
constructor(context, x) {
this._context = context;
this._x = x;
}
areaStart() {
this._line = 0;
}
areaEnd() {
this._line = NaN;
}
lineStart() {
this._point = 0;
}
lineEnd() {
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
this._line = 1 - this._line;
}
point(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: {
this._point = 1;
if (this._line) this._context.lineTo(x, y);
else this._context.moveTo(x, y);
break;
}
case 1: this._point = 2; // falls through
default: {
if (this._x) this._context.bezierCurveTo(this._x0 = (this._x0 + x) / 2, this._y0, this._x0, y, x, y);
else this._context.bezierCurveTo(this._x0, this._y0 = (this._y0 + y) / 2, x, this._y0, x, y);
break;
}
}
this._x0 = x, this._y0 = y;
}
}
class BumpRadial {
constructor(context) {
this._context = context;
}
lineStart() {
this._point = 0;
}
lineEnd() {}
point(x, y) {
x = +x, y = +y;
if (this._point === 0) {
this._point = 1;
} else {
const p0 = pointRadial(this._x0, this._y0);
const p1 = pointRadial(this._x0, this._y0 = (this._y0 + y) / 2);
const p2 = pointRadial(x, this._y0);
const p3 = pointRadial(x, y);
this._context.moveTo(...p0);
this._context.bezierCurveTo(...p1, ...p2, ...p3);
}
this._x0 = x, this._y0 = y;
}
}
function bumpX(context) {
return new Bump(context, true);
}
function bumpY(context) {
return new Bump(context, false);
}
function bumpRadial(context) {
return new BumpRadial(context);
}
function linkSource(d) {
return d.source;
}
function linkTarget(d) {
return d.target;
}
function link(curve) {
let source = linkSource,
target = linkTarget,
x$1 = x,
y$1 = y,
context = null,
output = null,
path = withPath(link);
function link() {
let buffer;
const argv = slice.call(arguments);
const s = source.apply(this, argv);
const t = target.apply(this, argv);
if (context == null) output = curve(buffer = path());
output.lineStart();
argv[0] = s, output.point(+x$1.apply(this, argv), +y$1.apply(this, argv));
argv[0] = t, output.point(+x$1.apply(this, argv), +y$1.apply(this, argv));
output.lineEnd();
if (buffer) return output = null, buffer + "" || null;
}
link.source = function(_) {
return arguments.length ? (source = _, link) : source;
};
link.target = function(_) {
return arguments.length ? (target = _, link) : target;
};
link.x = function(_) {
return arguments.length ? (x$1 = typeof _ === "function" ? _ : constant$1(+_), link) : x$1;
};
link.y = function(_) {
return arguments.length ? (y$1 = typeof _ === "function" ? _ : constant$1(+_), link) : y$1;
};
link.context = function(_) {
return arguments.length ? (_ == null ? context = output = null : output = curve(context = _), link) : context;
};
return link;
}
function linkHorizontal() {
return link(bumpX);
}
function linkVertical() {
return link(bumpY);
}
function linkRadial() {
const l = link(bumpRadial);
l.angle = l.x, delete l.x;
l.radius = l.y, delete l.y;
return l;
}
const sqrt3$2 = sqrt(3);
var asterisk = {
draw(context, size) {
const r = sqrt(size + min(size / 28, 0.75)) * 0.59436;
const t = r / 2;
const u = t * sqrt3$2;
context.moveTo(0, r);
context.lineTo(0, -r);
context.moveTo(-u, -t);
context.lineTo(u, t);
context.moveTo(-u, t);
context.lineTo(u, -t);
}
};
var circle = {
draw(context, size) {
const r = sqrt(size / pi);
context.moveTo(r, 0);
context.arc(0, 0, r, 0, tau);
}
};
var cross = {
draw(context, size) {
const r = sqrt(size / 5) / 2;
context.moveTo(-3 * r, -r);
context.lineTo(-r, -r);
context.lineTo(-r, -3 * r);
context.lineTo(r, -3 * r);
context.lineTo(r, -r);
context.lineTo(3 * r, -r);
context.lineTo(3 * r, r);
context.lineTo(r, r);
context.lineTo(r, 3 * r);
context.lineTo(-r, 3 * r);
context.lineTo(-r, r);
context.lineTo(-3 * r, r);
context.closePath();
}
};
const tan30 = sqrt(1 / 3);
const tan30_2 = tan30 * 2;
var diamond = {
draw(context, size) {
const y = sqrt(size / tan30_2);
const x = y * tan30;
context.moveTo(0, -y);
context.lineTo(x, 0);
context.lineTo(0, y);
context.lineTo(-x, 0);
context.closePath();
}
};
var diamond2 = {
draw(context, size) {
const r = sqrt(size) * 0.62625;
context.moveTo(0, -r);
context.lineTo(r, 0);
context.lineTo(0, r);
context.lineTo(-r, 0);
context.closePath();
}
};
var plus = {
draw(context, size) {
const r = sqrt(size - min(size / 7, 2)) * 0.87559;
context.moveTo(-r, 0);
context.lineTo(r, 0);
context.moveTo(0, r);
context.lineTo(0, -r);
}
};
var square = {
draw(context, size) {
const w = sqrt(size);
const x = -w / 2;
context.rect(x, x, w, w);
}
};
var square2 = {
draw(context, size) {
const r = sqrt(size) * 0.4431;
context.moveTo(r, r);
context.lineTo(r, -r);
context.lineTo(-r, -r);
context.lineTo(-r, r);
context.closePath();
}
};
const ka = 0.89081309152928522810;
const kr = sin(pi / 10) / sin(7 * pi / 10);
const kx = sin(tau / 10) * kr;
const ky = -cos(tau / 10) * kr;
var star = {
draw(context, size) {
const r = sqrt(size * ka);
const x = kx * r;
const y = ky * r;
context.moveTo(0, -r);
context.lineTo(x, y);
for (let i = 1; i < 5; ++i) {
const a = tau * i / 5;
const c = cos(a);
const s = sin(a);
context.lineTo(s * r, -c * r);
context.lineTo(c * x - s * y, s * x + c * y);
}
context.closePath();
}
};
const sqrt3$1 = sqrt(3);
var triangle = {
draw(context, size) {
const y = -sqrt(size / (sqrt3$1 * 3));
context.moveTo(0, y * 2);
context.lineTo(-sqrt3$1 * y, -y);
context.lineTo(sqrt3$1 * y, -y);
context.closePath();
}
};
const sqrt3 = sqrt(3);
var triangle2 = {
draw(context, size) {
const s = sqrt(size) * 0.6824;
const t = s / 2;
const u = (s * sqrt3) / 2; // cos(Math.PI / 6)
context.moveTo(0, -s);
context.lineTo(u, t);
context.lineTo(-u, t);
context.closePath();
}
};
const c = -0.5;
const s = sqrt(3) / 2;
const k = 1 / sqrt(12);
const a = (k / 2 + 1) * 3;
var wye = {
draw(context, size) {
const r = sqrt(size / a);
const x0 = r / 2, y0 = r * k;
const x1 = x0, y1 = r * k + r;
const x2 = -x1, y2 = y1;
context.moveTo(x0, y0);
context.lineTo(x1, y1);
context.lineTo(x2, y2);
context.lineTo(c * x0 - s * y0, s * x0 + c * y0);
context.lineTo(c * x1 - s * y1, s * x1 + c * y1);
context.lineTo(c * x2 - s * y2, s * x2 + c * y2);
context.lineTo(c * x0 + s * y0, c * y0 - s * x0);
context.lineTo(c * x1 + s * y1, c * y1 - s * x1);
context.lineTo(c * x2 + s * y2, c * y2 - s * x2);
context.closePath();
}
};
var times = {
draw(context, size) {
const r = sqrt(size - min(size / 6, 1.7)) * 0.6189;
context.moveTo(-r, -r);
context.lineTo(r, r);
context.moveTo(-r, r);
context.lineTo(r, -r);
}
};
// These symbols are designed to be filled.
const symbolsFill = [
circle,
cross,
diamond,
square,
star,
triangle,
wye
];
// These symbols are designed to be stroked (with a width of 1.5px and round caps).
const symbolsStroke = [
circle,
plus,
times,
triangle2,
asterisk,
square2,
diamond2
];
function Symbol$1(type, size) {
let context = null,
path = withPath(symbol);
type = typeof type === "function" ? type : constant$1(type || circle);
size = typeof size === "function" ? size : constant$1(size === undefined ? 64 : +size);
function symbol() {
let buffer;
if (!context) context = buffer = path();
type.apply(this, arguments).draw(context, +size.apply(this, arguments));
if (buffer) return context = null, buffer + "" || null;
}
symbol.type = function(_) {
return arguments.length ? (type = typeof _ === "function" ? _ : constant$1(_), symbol) : type;
};
symbol.size = function(_) {
return arguments.length ? (size = typeof _ === "function" ? _ : constant$1(+_), symbol) : size;
};
symbol.context = function(_) {
return arguments.length ? (context = _ == null ? null : _, symbol) : context;
};
return symbol;
}
function noop() {}
function point$3(that, x, y) {
that._context.bezierCurveTo(
(2 * that._x0 + that._x1) / 3,
(2 * that._y0 + that._y1) / 3,
(that._x0 + 2 * that._x1) / 3,
(that._y0 + 2 * that._y1) / 3,
(that._x0 + 4 * that._x1 + x) / 6,
(that._y0 + 4 * that._y1 + y) / 6
);
}
function Basis(context) {
this._context = context;
}
Basis.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 =
this._y0 = this._y1 = NaN;
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 3: point$3(this, this._x1, this._y1); // falls through
case 2: this._context.lineTo(this._x1, this._y1); break;
}
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break;
case 1: this._point = 2; break;
case 2: this._point = 3; this._context.lineTo((5 * this._x0 + this._x1) / 6, (5 * this._y0 + this._y1) / 6); // falls through
default: point$3(this, x, y); break;
}
this._x0 = this._x1, this._x1 = x;
this._y0 = this._y1, this._y1 = y;
}
};
function basis(context) {
return new Basis(context);
}
function BasisClosed(context) {
this._context = context;
}
BasisClosed.prototype = {
areaStart: noop,
areaEnd: noop,
lineStart: function() {
this._x0 = this._x1 = this._x2 = this._x3 = this._x4 =
this._y0 = this._y1 = this._y2 = this._y3 = this._y4 = NaN;
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 1: {
this._context.moveTo(this._x2, this._y2);
this._context.closePath();
break;
}
case 2: {
this._context.moveTo((this._x2 + 2 * this._x3) / 3, (this._y2 + 2 * this._y3) / 3);
this._context.lineTo((this._x3 + 2 * this._x2) / 3, (this._y3 + 2 * this._y2) / 3);
this._context.closePath();
break;
}
case 3: {
this.point(this._x2, this._y2);
this.point(this._x3, this._y3);
this.point(this._x4, this._y4);
break;
}
}
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; this._x2 = x, this._y2 = y; break;
case 1: this._point = 2; this._x3 = x, this._y3 = y; break;
case 2: this._point = 3; this._x4 = x, this._y4 = y; this._context.moveTo((this._x0 + 4 * this._x1 + x) / 6, (this._y0 + 4 * this._y1 + y) / 6); break;
default: point$3(this, x, y); break;
}
this._x0 = this._x1, this._x1 = x;
this._y0 = this._y1, this._y1 = y;
}
};
function basisClosed(context) {
return new BasisClosed(context);
}
function BasisOpen(context) {
this._context = context;
}
BasisOpen.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 =
this._y0 = this._y1 = NaN;
this._point = 0;
},
lineEnd: function() {
if (this._line || (this._line !== 0 && this._point === 3)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; break;
case 1: this._point = 2; break;
case 2: this._point = 3; var x0 = (this._x0 + 4 * this._x1 + x) / 6, y0 = (this._y0 + 4 * this._y1 + y) / 6; this._line ? this._context.lineTo(x0, y0) : this._context.moveTo(x0, y0); break;
case 3: this._point = 4; // falls through
default: point$3(this, x, y); break;
}
this._x0 = this._x1, this._x1 = x;
this._y0 = this._y1, this._y1 = y;
}
};
function basisOpen(context) {
return new BasisOpen(context);
}
function Bundle(context, beta) {
this._basis = new Basis(context);
this._beta = beta;
}
Bundle.prototype = {
lineStart: function() {
this._x = [];
this._y = [];
this._basis.lineStart();
},
lineEnd: function() {
var x = this._x,
y = this._y,
j = x.length - 1;
if (j > 0) {
var x0 = x[0],
y0 = y[0],
dx = x[j] - x0,
dy = y[j] - y0,
i = -1,
t;
while (++i <= j) {
t = i / j;
this._basis.point(
this._beta * x[i] + (1 - this._beta) * (x0 + t * dx),
this._beta * y[i] + (1 - this._beta) * (y0 + t * dy)
);
}
}
this._x = this._y = null;
this._basis.lineEnd();
},
point: function(x, y) {
this._x.push(+x);
this._y.push(+y);
}
};
var bundle = (function custom(beta) {
function bundle(context) {
return beta === 1 ? new Basis(context) : new Bundle(context, beta);
}
bundle.beta = function(beta) {
return custom(+beta);
};
return bundle;
})(0.85);
function point$2(that, x, y) {
that._context.bezierCurveTo(
that._x1 + that._k * (that._x2 - that._x0),
that._y1 + that._k * (that._y2 - that._y0),
that._x2 + that._k * (that._x1 - x),
that._y2 + that._k * (that._y1 - y),
that._x2,
that._y2
);
}
function Cardinal(context, tension) {
this._context = context;
this._k = (1 - tension) / 6;
}
Cardinal.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 = this._x2 =
this._y0 = this._y1 = this._y2 = NaN;
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 2: this._context.lineTo(this._x2, this._y2); break;
case 3: point$2(this, this._x1, this._y1); break;
}
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break;
case 1: this._point = 2; this._x1 = x, this._y1 = y; break;
case 2: this._point = 3; // falls through
default: point$2(this, x, y); break;
}
this._x0 = this._x1, this._x1 = this._x2, this._x2 = x;
this._y0 = this._y1, this._y1 = this._y2, this._y2 = y;
}
};
var cardinal = (function custom(tension) {
function cardinal(context) {
return new Cardinal(context, tension);
}
cardinal.tension = function(tension) {
return custom(+tension);
};
return cardinal;
})(0);
function CardinalClosed(context, tension) {
this._context = context;
this._k = (1 - tension) / 6;
}
CardinalClosed.prototype = {
areaStart: noop,
areaEnd: noop,
lineStart: function() {
this._x0 = this._x1 = this._x2 = this._x3 = this._x4 = this._x5 =
this._y0 = this._y1 = this._y2 = this._y3 = this._y4 = this._y5 = NaN;
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 1: {
this._context.moveTo(this._x3, this._y3);
this._context.closePath();
break;
}
case 2: {
this._context.lineTo(this._x3, this._y3);
this._context.closePath();
break;
}
case 3: {
this.point(this._x3, this._y3);
this.point(this._x4, this._y4);
this.point(this._x5, this._y5);
break;
}
}
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; this._x3 = x, this._y3 = y; break;
case 1: this._point = 2; this._context.moveTo(this._x4 = x, this._y4 = y); break;
case 2: this._point = 3; this._x5 = x, this._y5 = y; break;
default: point$2(this, x, y); break;
}
this._x0 = this._x1, this._x1 = this._x2, this._x2 = x;
this._y0 = this._y1, this._y1 = this._y2, this._y2 = y;
}
};
var cardinalClosed = (function custom(tension) {
function cardinal(context) {
return new CardinalClosed(context, tension);
}
cardinal.tension = function(tension) {
return custom(+tension);
};
return cardinal;
})(0);
function CardinalOpen(context, tension) {
this._context = context;
this._k = (1 - tension) / 6;
}
CardinalOpen.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 = this._x2 =
this._y0 = this._y1 = this._y2 = NaN;
this._point = 0;
},
lineEnd: function() {
if (this._line || (this._line !== 0 && this._point === 3)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; break;
case 1: this._point = 2; break;
case 2: this._point = 3; this._line ? this._context.lineTo(this._x2, this._y2) : this._context.moveTo(this._x2, this._y2); break;
case 3: this._point = 4; // falls through
default: point$2(this, x, y); break;
}
this._x0 = this._x1, this._x1 = this._x2, this._x2 = x;
this._y0 = this._y1, this._y1 = this._y2, this._y2 = y;
}
};
var cardinalOpen = (function custom(tension) {
function cardinal(context) {
return new CardinalOpen(context, tension);
}
cardinal.tension = function(tension) {
return custom(+tension);
};
return cardinal;
})(0);
function point$1(that, x, y) {
var x1 = that._x1,
y1 = that._y1,
x2 = that._x2,
y2 = that._y2;
if (that._l01_a > epsilon) {
var a = 2 * that._l01_2a + 3 * that._l01_a * that._l12_a + that._l12_2a,
n = 3 * that._l01_a * (that._l01_a + that._l12_a);
x1 = (x1 * a - that._x0 * that._l12_2a + that._x2 * that._l01_2a) / n;
y1 = (y1 * a - that._y0 * that._l12_2a + that._y2 * that._l01_2a) / n;
}
if (that._l23_a > epsilon) {
var b = 2 * that._l23_2a + 3 * that._l23_a * that._l12_a + that._l12_2a,
m = 3 * that._l23_a * (that._l23_a + that._l12_a);
x2 = (x2 * b + that._x1 * that._l23_2a - x * that._l12_2a) / m;
y2 = (y2 * b + that._y1 * that._l23_2a - y * that._l12_2a) / m;
}
that._context.bezierCurveTo(x1, y1, x2, y2, that._x2, that._y2);
}
function CatmullRom(context, alpha) {
this._context = context;
this._alpha = alpha;
}
CatmullRom.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 = this._x2 =
this._y0 = this._y1 = this._y2 = NaN;
this._l01_a = this._l12_a = this._l23_a =
this._l01_2a = this._l12_2a = this._l23_2a =
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 2: this._context.lineTo(this._x2, this._y2); break;
case 3: this.point(this._x2, this._y2); break;
}
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
if (this._point) {
var x23 = this._x2 - x,
y23 = this._y2 - y;
this._l23_a = Math.sqrt(this._l23_2a = Math.pow(x23 * x23 + y23 * y23, this._alpha));
}
switch (this._point) {
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break;
case 1: this._point = 2; break;
case 2: this._point = 3; // falls through
default: point$1(this, x, y); break;
}
this._l01_a = this._l12_a, this._l12_a = this._l23_a;
this._l01_2a = this._l12_2a, this._l12_2a = this._l23_2a;
this._x0 = this._x1, this._x1 = this._x2, this._x2 = x;
this._y0 = this._y1, this._y1 = this._y2, this._y2 = y;
}
};
var catmullRom = (function custom(alpha) {
function catmullRom(context) {
return alpha ? new CatmullRom(context, alpha) : new Cardinal(context, 0);
}
catmullRom.alpha = function(alpha) {
return custom(+alpha);
};
return catmullRom;
})(0.5);
function CatmullRomClosed(context, alpha) {
this._context = context;
this._alpha = alpha;
}
CatmullRomClosed.prototype = {
areaStart: noop,
areaEnd: noop,
lineStart: function() {
this._x0 = this._x1 = this._x2 = this._x3 = this._x4 = this._x5 =
this._y0 = this._y1 = this._y2 = this._y3 = this._y4 = this._y5 = NaN;
this._l01_a = this._l12_a = this._l23_a =
this._l01_2a = this._l12_2a = this._l23_2a =
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 1: {
this._context.moveTo(this._x3, this._y3);
this._context.closePath();
break;
}
case 2: {
this._context.lineTo(this._x3, this._y3);
this._context.closePath();
break;
}
case 3: {
this.point(this._x3, this._y3);
this.point(this._x4, this._y4);
this.point(this._x5, this._y5);
break;
}
}
},
point: function(x, y) {
x = +x, y = +y;
if (this._point) {
var x23 = this._x2 - x,
y23 = this._y2 - y;
this._l23_a = Math.sqrt(this._l23_2a = Math.pow(x23 * x23 + y23 * y23, this._alpha));
}
switch (this._point) {
case 0: this._point = 1; this._x3 = x, this._y3 = y; break;
case 1: this._point = 2; this._context.moveTo(this._x4 = x, this._y4 = y); break;
case 2: this._point = 3; this._x5 = x, this._y5 = y; break;
default: point$1(this, x, y); break;
}
this._l01_a = this._l12_a, this._l12_a = this._l23_a;
this._l01_2a = this._l12_2a, this._l12_2a = this._l23_2a;
this._x0 = this._x1, this._x1 = this._x2, this._x2 = x;
this._y0 = this._y1, this._y1 = this._y2, this._y2 = y;
}
};
var catmullRomClosed = (function custom(alpha) {
function catmullRom(context) {
return alpha ? new CatmullRomClosed(context, alpha) : new CardinalClosed(context, 0);
}
catmullRom.alpha = function(alpha) {
return custom(+alpha);
};
return catmullRom;
})(0.5);
function CatmullRomOpen(context, alpha) {
this._context = context;
this._alpha = alpha;
}
CatmullRomOpen.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 = this._x2 =
this._y0 = this._y1 = this._y2 = NaN;
this._l01_a = this._l12_a = this._l23_a =
this._l01_2a = this._l12_2a = this._l23_2a =
this._point = 0;
},
lineEnd: function() {
if (this._line || (this._line !== 0 && this._point === 3)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
if (this._point) {
var x23 = this._x2 - x,
y23 = this._y2 - y;
this._l23_a = Math.sqrt(this._l23_2a = Math.pow(x23 * x23 + y23 * y23, this._alpha));
}
switch (this._point) {
case 0: this._point = 1; break;
case 1: this._point = 2; break;
case 2: this._point = 3; this._line ? this._context.lineTo(this._x2, this._y2) : this._context.moveTo(this._x2, this._y2); break;
case 3: this._point = 4; // falls through
default: point$1(this, x, y); break;
}
this._l01_a = this._l12_a, this._l12_a = this._l23_a;
this._l01_2a = this._l12_2a, this._l12_2a = this._l23_2a;
this._x0 = this._x1, this._x1 = this._x2, this._x2 = x;
this._y0 = this._y1, this._y1 = this._y2, this._y2 = y;
}
};
var catmullRomOpen = (function custom(alpha) {
function catmullRom(context) {
return alpha ? new CatmullRomOpen(context, alpha) : new CardinalOpen(context, 0);
}
catmullRom.alpha = function(alpha) {
return custom(+alpha);
};
return catmullRom;
})(0.5);
function LinearClosed(context) {
this._context = context;
}
LinearClosed.prototype = {
areaStart: noop,
areaEnd: noop,
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._point) this._context.closePath();
},
point: function(x, y) {
x = +x, y = +y;
if (this._point) this._context.lineTo(x, y);
else this._point = 1, this._context.moveTo(x, y);
}
};
function linearClosed(context) {
return new LinearClosed(context);
}
function sign(x) {
return x < 0 ? -1 : 1;
}
// Calculate the slopes of the tangents (Hermite-type interpolation) based on
// the following paper: Steffen, M. 1990. A Simple Method for Monotonic
// Interpolation in One Dimension. Astronomy and Astrophysics, Vol. 239, NO.
// NOV(II), P. 443, 1990.
function slope3(that, x2, y2) {
var h0 = that._x1 - that._x0,
h1 = x2 - that._x1,
s0 = (that._y1 - that._y0) / (h0 || h1 < 0 && -0),
s1 = (y2 - that._y1) / (h1 || h0 < 0 && -0),
p = (s0 * h1 + s1 * h0) / (h0 + h1);
return (sign(s0) + sign(s1)) * Math.min(Math.abs(s0), Math.abs(s1), 0.5 * Math.abs(p)) || 0;
}
// Calculate a one-sided slope.
function slope2(that, t) {
var h = that._x1 - that._x0;
return h ? (3 * (that._y1 - that._y0) / h - t) / 2 : t;
}
// According to https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Representations
// "you can express cubic Hermite interpolation in terms of cubic Bézier curves
// with respect to the four values p0, p0 + m0 / 3, p1 - m1 / 3, p1".
function point(that, t0, t1) {
var x0 = that._x0,
y0 = that._y0,
x1 = that._x1,
y1 = that._y1,
dx = (x1 - x0) / 3;
that._context.bezierCurveTo(x0 + dx, y0 + dx * t0, x1 - dx, y1 - dx * t1, x1, y1);
}
function MonotoneX(context) {
this._context = context;
}
MonotoneX.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 =
this._y0 = this._y1 =
this._t0 = NaN;
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 2: this._context.lineTo(this._x1, this._y1); break;
case 3: point(this, this._t0, slope2(this, this._t0)); break;
}
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
var t1 = NaN;
x = +x, y = +y;
if (x === this._x1 && y === this._y1) return; // Ignore coincident points.
switch (this._point) {
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break;
case 1: this._point = 2; break;
case 2: this._point = 3; point(this, slope2(this, t1 = slope3(this, x, y)), t1); break;
default: point(this, this._t0, t1 = slope3(this, x, y)); break;
}
this._x0 = this._x1, this._x1 = x;
this._y0 = this._y1, this._y1 = y;
this._t0 = t1;
}
};
function MonotoneY(context) {
this._context = new ReflectContext(context);
}
(MonotoneY.prototype = Object.create(MonotoneX.prototype)).point = function(x, y) {
MonotoneX.prototype.point.call(this, y, x);
};
function ReflectContext(context) {
this._context = context;
}
ReflectContext.prototype = {
moveTo: function(x, y) { this._context.moveTo(y, x); },
closePath: function() { this._context.closePath(); },
lineTo: function(x, y) { this._context.lineTo(y, x); },
bezierCurveTo: function(x1, y1, x2, y2, x, y) { this._context.bezierCurveTo(y1, x1, y2, x2, y, x); }
};
function monotoneX(context) {
return new MonotoneX(context);
}
function monotoneY(context) {
return new MonotoneY(context);
}
function Natural(context) {
this._context = context;
}
Natural.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x = [];
this._y = [];
},
lineEnd: function() {
var x = this._x,
y = this._y,
n = x.length;
if (n) {
this._line ? this._context.lineTo(x[0], y[0]) : this._context.moveTo(x[0], y[0]);
if (n === 2) {
this._context.lineTo(x[1], y[1]);
} else {
var px = controlPoints(x),
py = controlPoints(y);
for (var i0 = 0, i1 = 1; i1 < n; ++i0, ++i1) {
this._context.bezierCurveTo(px[0][i0], py[0][i0], px[1][i0], py[1][i0], x[i1], y[i1]);
}
}
}
if (this._line || (this._line !== 0 && n === 1)) this._context.closePath();
this._line = 1 - this._line;
this._x = this._y = null;
},
point: function(x, y) {
this._x.push(+x);
this._y.push(+y);
}
};
// See https://www.particleincell.com/2012/bezier-splines/ for derivation.
function controlPoints(x) {
var i,
n = x.length - 1,
m,
a = new Array(n),
b = new Array(n),
r = new Array(n);
a[0] = 0, b[0] = 2, r[0] = x[0] + 2 * x[1];
for (i = 1; i < n - 1; ++i) a[i] = 1, b[i] = 4, r[i] = 4 * x[i] + 2 * x[i + 1];
a[n - 1] = 2, b[n - 1] = 7, r[n - 1] = 8 * x[n - 1] + x[n];
for (i = 1; i < n; ++i) m = a[i] / b[i - 1], b[i] -= m, r[i] -= m * r[i - 1];
a[n - 1] = r[n - 1] / b[n - 1];
for (i = n - 2; i >= 0; --i) a[i] = (r[i] - a[i + 1]) / b[i];
b[n - 1] = (x[n] + a[n - 1]) / 2;
for (i = 0; i < n - 1; ++i) b[i] = 2 * x[i + 1] - a[i + 1];
return [a, b];
}
function natural(context) {
return new Natural(context);
}
function Step(context, t) {
this._context = context;
this._t = t;
}
Step.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x = this._y = NaN;
this._point = 0;
},
lineEnd: function() {
if (0 < this._t && this._t < 1 && this._point === 2) this._context.lineTo(this._x, this._y);
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
if (this._line >= 0) this._t = 1 - this._t, this._line = 1 - this._line;
},
point: function(x, y) {
x = +x, y = +y;
switch (this._point) {
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break;
case 1: this._point = 2; // falls through
default: {
if (this._t <= 0) {
this._context.lineTo(this._x, y);
this._context.lineTo(x, y);
} else {
var x1 = this._x * (1 - this._t) + x * this._t;
this._context.lineTo(x1, this._y);
this._context.lineTo(x1, y);
}
break;
}
}
this._x = x, this._y = y;
}
};
function step(context) {
return new Step(context, 0.5);
}
function stepBefore(context) {
return new Step(context, 0);
}
function stepAfter(context) {
return new Step(context, 1);
}
function none$1(series, order) {
if (!((n = series.length) > 1)) return;
for (var i = 1, j, s0, s1 = series[order[0]], n, m = s1.length; i < n; ++i) {
s0 = s1, s1 = series[order[i]];
for (j = 0; j < m; ++j) {
s1[j][1] += s1[j][0] = isNaN(s0[j][1]) ? s0[j][0] : s0[j][1];
}
}
}
function none(series) {
var n = series.length, o = new Array(n);
while (--n >= 0) o[n] = n;
return o;
}
function stackValue(d, key) {
return d[key];
}
function stackSeries(key) {
const series = [];
series.key = key;
return series;
}
function stack() {
var keys = constant$1([]),
order = none,
offset = none$1,
value = stackValue;
function stack(data) {
var sz = Array.from(keys.apply(this, arguments), stackSeries),
i, n = sz.length, j = -1,
oz;
for (const d of data) {
for (i = 0, ++j; i < n; ++i) {
(sz[i][j] = [0, +value(d, sz[i].key, j, data)]).data = d;
}
}
for (i = 0, oz = array(order(sz)); i < n; ++i) {
sz[oz[i]].index = i;
}
offset(sz, oz);
return sz;
}
stack.keys = function(_) {
return arguments.length ? (keys = typeof _ === "function" ? _ : constant$1(Array.from(_)), stack) : keys;
};
stack.value = function(_) {
return arguments.length ? (value = typeof _ === "function" ? _ : constant$1(+_), stack) : value;
};
stack.order = function(_) {
return arguments.length ? (order = _ == null ? none : typeof _ === "function" ? _ : constant$1(Array.from(_)), stack) : order;
};
stack.offset = function(_) {
return arguments.length ? (offset = _ == null ? none$1 : _, stack) : offset;
};
return stack;
}
function expand(series, order) {
if (!((n = series.length) > 0)) return;
for (var i, n, j = 0, m = series[0].length, y; j < m; ++j) {
for (y = i = 0; i < n; ++i) y += series[i][j][1] || 0;
if (y) for (i = 0; i < n; ++i) series[i][j][1] /= y;
}
none$1(series, order);
}
function diverging(series, order) {
if (!((n = series.length) > 0)) return;
for (var i, j = 0, d, dy, yp, yn, n, m = series[order[0]].length; j < m; ++j) {
for (yp = yn = 0, i = 0; i < n; ++i) {
if ((dy = (d = series[order[i]][j])[1] - d[0]) > 0) {
d[0] = yp, d[1] = yp += dy;
} else if (dy < 0) {
d[1] = yn, d[0] = yn += dy;
} else {
d[0] = 0, d[1] = dy;
}
}
}
}
function silhouette(series, order) {
if (!((n = series.length) > 0)) return;
for (var j = 0, s0 = series[order[0]], n, m = s0.length; j < m; ++j) {
for (var i = 0, y = 0; i < n; ++i) y += series[i][j][1] || 0;
s0[j][1] += s0[j][0] = -y / 2;
}
none$1(series, order);
}
function wiggle(series, order) {
if (!((n = series.length) > 0) || !((m = (s0 = series[order[0]]).length) > 0)) return;
for (var y = 0, j = 1, s0, m, n; j < m; ++j) {
for (var i = 0, s1 = 0, s2 = 0; i < n; ++i) {
var si = series[order[i]],
sij0 = si[j][1] || 0,
sij1 = si[j - 1][1] || 0,
s3 = (sij0 - sij1) / 2;
for (var k = 0; k < i; ++k) {
var sk = series[order[k]],
skj0 = sk[j][1] || 0,
skj1 = sk[j - 1][1] || 0;
s3 += skj0 - skj1;
}
s1 += sij0, s2 += s3 * sij0;
}
s0[j - 1][1] += s0[j - 1][0] = y;
if (s1) y -= s2 / s1;
}
s0[j - 1][1] += s0[j - 1][0] = y;
none$1(series, order);
}
function appearance(series) {
var peaks = series.map(peak);
return none(series).sort(function(a, b) { return peaks[a] - peaks[b]; });
}
function peak(series) {
var i = -1, j = 0, n = series.length, vi, vj = -Infinity;
while (++i < n) if ((vi = +series[i][1]) > vj) vj = vi, j = i;
return j;
}
function ascending(series) {
var sums = series.map(sum);
return none(series).sort(function(a, b) { return sums[a] - sums[b]; });
}
function sum(series) {
var s = 0, i = -1, n = series.length, v;
while (++i < n) if (v = +series[i][1]) s += v;
return s;
}
function descending(series) {
return ascending(series).reverse();
}
function insideOut(series) {
var n = series.length,
i,
j,
sums = series.map(sum),
order = appearance(series),
top = 0,
bottom = 0,
tops = [],
bottoms = [];
for (i = 0; i < n; ++i) {
j = order[i];
if (top < bottom) {
top += sums[j];
tops.push(j);
} else {
bottom += sums[j];
bottoms.push(j);
}
}
return bottoms.reverse().concat(tops);
}
function reverse(series) {
return none(series).reverse();
}
var constant = x => () => x;
function ZoomEvent(type, {
sourceEvent,
target,
transform,
dispatch
}) {
Object.defineProperties(this, {
type: {value: type, enumerable: true, configurable: true},
sourceEvent: {value: sourceEvent, enumerable: true, configurable: true},
target: {value: target, enumerable: true, configurable: true},
transform: {value: transform, enumerable: true, configurable: true},
_: {value: dispatch}
});
}
function Transform(k, x, y) {
this.k = k;
this.x = x;
this.y = y;
}
Transform.prototype = {
constructor: Transform,
scale: function(k) {
return k === 1 ? this : new Transform(this.k * k, this.x, this.y);
},
translate: function(x, y) {
return x === 0 & y === 0 ? this : new Transform(this.k, this.x + this.k * x, this.y + this.k * y);
},
apply: function(point) {
return [point[0] * this.k + this.x, point[1] * this.k + this.y];
},
applyX: function(x) {
return x * this.k + this.x;
},
applyY: function(y) {
return y * this.k + this.y;
},
invert: function(location) {
return [(location[0] - this.x) / this.k, (location[1] - this.y) / this.k];
},
invertX: function(x) {
return (x - this.x) / this.k;
},
invertY: function(y) {
return (y - this.y) / this.k;
},
rescaleX: function(x) {
return x.copy().domain(x.range().map(this.invertX, this).map(x.invert, x));
},
rescaleY: function(y) {
return y.copy().domain(y.range().map(this.invertY, this).map(y.invert, y));
},
toString: function() {
return "translate(" + this.x + "," + this.y + ") scale(" + this.k + ")";
}
};
var identity = new Transform(1, 0, 0);
transform.prototype = Transform.prototype;
function transform(node) {
while (!node.__zoom) if (!(node = node.parentNode)) return identity;
return node.__zoom;
}
function nopropagation(event) {
event.stopImmediatePropagation();
}
function noevent(event) {
event.preventDefault();
event.stopImmediatePropagation();
}
// Ignore right-click, since that should open the context menu.
// except for pinch-to-zoom, which is sent as a wheel+ctrlKey event
function defaultFilter(event) {
return (!event.ctrlKey || event.type === 'wheel') && !event.button;
}
function defaultExtent() {
var e = this;
if (e instanceof SVGElement) {
e = e.ownerSVGElement || e;
if (e.hasAttribute("viewBox")) {
e = e.viewBox.baseVal;
return [[e.x, e.y], [e.x + e.width, e.y + e.height]];
}
return [[0, 0], [e.width.baseVal.value, e.height.baseVal.value]];
}
return [[0, 0], [e.clientWidth, e.clientHeight]];
}
function defaultTransform() {
return this.__zoom || identity;
}
function defaultWheelDelta(event) {
return -event.deltaY * (event.deltaMode === 1 ? 0.05 : event.deltaMode ? 1 : 0.002) * (event.ctrlKey ? 10 : 1);
}
function defaultTouchable() {
return navigator.maxTouchPoints || ("ontouchstart" in this);
}
function defaultConstrain(transform, extent, translateExtent) {
var dx0 = transform.invertX(extent[0][0]) - translateExtent[0][0],
dx1 = transform.invertX(extent[1][0]) - translateExtent[1][0],
dy0 = transform.invertY(extent[0][1]) - translateExtent[0][1],
dy1 = transform.invertY(extent[1][1]) - translateExtent[1][1];
return transform.translate(
dx1 > dx0 ? (dx0 + dx1) / 2 : Math.min(0, dx0) || Math.max(0, dx1),
dy1 > dy0 ? (dy0 + dy1) / 2 : Math.min(0, dy0) || Math.max(0, dy1)
);
}
function zoom() {
var filter = defaultFilter,
extent = defaultExtent,
constrain = defaultConstrain,
wheelDelta = defaultWheelDelta,
touchable = defaultTouchable,
scaleExtent = [0, Infinity],
translateExtent = [[-Infinity, -Infinity], [Infinity, Infinity]],
duration = 250,
interpolate = interpolateZoom,
listeners = dispatch("start", "zoom", "end"),
touchstarting,
touchfirst,
touchending,
touchDelay = 500,
wheelDelay = 150,
clickDistance2 = 0,
tapDistance = 10;
function zoom(selection) {
selection
.property("__zoom", defaultTransform)
.on("wheel.zoom", wheeled, {passive: false})
.on("mousedown.zoom", mousedowned)
.on("dblclick.zoom", dblclicked)
.filter(touchable)
.on("touchstart.zoom", touchstarted)
.on("touchmove.zoom", touchmoved)
.on("touchend.zoom touchcancel.zoom", touchended)
.style("-webkit-tap-highlight-color", "rgba(0,0,0,0)");
}
zoom.transform = function(collection, transform, point, event) {
var selection = collection.selection ? collection.selection() : collection;
selection.property("__zoom", defaultTransform);
if (collection !== selection) {
schedule(collection, transform, point, event);
} else {
selection.interrupt().each(function() {
gesture(this, arguments)
.event(event)
.start()
.zoom(null, typeof transform === "function" ? transform.apply(this, arguments) : transform)
.end();
});
}
};
zoom.scaleBy = function(selection, k, p, event) {
zoom.scaleTo(selection, function() {
var k0 = this.__zoom.k,
k1 = typeof k === "function" ? k.apply(this, arguments) : k;
return k0 * k1;
}, p, event);
};
zoom.scaleTo = function(selection, k, p, event) {
zoom.transform(selection, function() {
var e = extent.apply(this, arguments),
t0 = this.__zoom,
p0 = p == null ? centroid(e) : typeof p === "function" ? p.apply(this, arguments) : p,
p1 = t0.invert(p0),
k1 = typeof k === "function" ? k.apply(this, arguments) : k;
return constrain(translate(scale(t0, k1), p0, p1), e, translateExtent);
}, p, event);
};
zoom.translateBy = function(selection, x, y, event) {
zoom.transform(selection, function() {
return constrain(this.__zoom.translate(
typeof x === "function" ? x.apply(this, arguments) : x,
typeof y === "function" ? y.apply(this, arguments) : y
), extent.apply(this, arguments), translateExtent);
}, null, event);
};
zoom.translateTo = function(selection, x, y, p, event) {
zoom.transform(selection, function() {
var e = extent.apply(this, arguments),
t = this.__zoom,
p0 = p == null ? centroid(e) : typeof p === "function" ? p.apply(this, arguments) : p;
return constrain(identity.translate(p0[0], p0[1]).scale(t.k).translate(
typeof x === "function" ? -x.apply(this, arguments) : -x,
typeof y === "function" ? -y.apply(this, arguments) : -y
), e, translateExtent);
}, p, event);
};
function scale(transform, k) {
k = Math.max(scaleExtent[0], Math.min(scaleExtent[1], k));
return k === transform.k ? transform : new Transform(k, transform.x, transform.y);
}
function translate(transform, p0, p1) {
var x = p0[0] - p1[0] * transform.k, y = p0[1] - p1[1] * transform.k;
return x === transform.x && y === transform.y ? transform : new Transform(transform.k, x, y);
}
function centroid(extent) {
return [(+extent[0][0] + +extent[1][0]) / 2, (+extent[0][1] + +extent[1][1]) / 2];
}
function schedule(transition, transform, point, event) {
transition
.on("start.zoom", function() { gesture(this, arguments).event(event).start(); })
.on("interrupt.zoom end.zoom", function() { gesture(this, arguments).event(event).end(); })
.tween("zoom", function() {
var that = this,
args = arguments,
g = gesture(that, args).event(event),
e = extent.apply(that, args),
p = point == null ? centroid(e) : typeof point === "function" ? point.apply(that, args) : point,
w = Math.max(e[1][0] - e[0][0], e[1][1] - e[0][1]),
a = that.__zoom,
b = typeof transform === "function" ? transform.apply(that, args) : transform,
i = interpolate(a.invert(p).concat(w / a.k), b.invert(p).concat(w / b.k));
return function(t) {
if (t === 1) t = b; // Avoid rounding error on end.
else { var l = i(t), k = w / l[2]; t = new Transform(k, p[0] - l[0] * k, p[1] - l[1] * k); }
g.zoom(null, t);
};
});
}
function gesture(that, args, clean) {
return (!clean && that.__zooming) || new Gesture(that, args);
}
function Gesture(that, args) {
this.that = that;
this.args = args;
this.active = 0;
this.sourceEvent = null;
this.extent = extent.apply(that, args);
this.taps = 0;
}
Gesture.prototype = {
event: function(event) {
if (event) this.sourceEvent = event;
return this;
},
start: function() {
if (++this.active === 1) {
this.that.__zooming = this;
this.emit("start");
}
return this;
},
zoom: function(key, transform) {
if (this.mouse && key !== "mouse") this.mouse[1] = transform.invert(this.mouse[0]);
if (this.touch0 && key !== "touch") this.touch0[1] = transform.invert(this.touch0[0]);
if (this.touch1 && key !== "touch") this.touch1[1] = transform.invert(this.touch1[0]);
this.that.__zoom = transform;
this.emit("zoom");
return this;
},
end: function() {
if (--this.active === 0) {
delete this.that.__zooming;
this.emit("end");
}
return this;
},
emit: function(type) {
var d = select(this.that).datum();
listeners.call(
type,
this.that,
new ZoomEvent(type, {
sourceEvent: this.sourceEvent,
target: zoom,
type,
transform: this.that.__zoom,
dispatch: listeners
}),
d
);
}
};
function wheeled(event, ...args) {
if (!filter.apply(this, arguments)) return;
var g = gesture(this, args).event(event),
t = this.__zoom,
k = Math.max(scaleExtent[0], Math.min(scaleExtent[1], t.k * Math.pow(2, wheelDelta.apply(this, arguments)))),
p = pointer(event);
// If the mouse is in the same location as before, reuse it.
// If there were recent wheel events, reset the wheel idle timeout.
if (g.wheel) {
if (g.mouse[0][0] !== p[0] || g.mouse[0][1] !== p[1]) {
g.mouse[1] = t.invert(g.mouse[0] = p);
}
clearTimeout(g.wheel);
}
// If this wheel event wont trigger a transform change, ignore it.
else if (t.k === k) return;
// Otherwise, capture the mouse point and location at the start.
else {
g.mouse = [p, t.invert(p)];
interrupt(this);
g.start();
}
noevent(event);
g.wheel = setTimeout(wheelidled, wheelDelay);
g.zoom("mouse", constrain(translate(scale(t, k), g.mouse[0], g.mouse[1]), g.extent, translateExtent));
function wheelidled() {
g.wheel = null;
g.end();
}
}
function mousedowned(event, ...args) {
if (touchending || !filter.apply(this, arguments)) return;
var currentTarget = event.currentTarget,
g = gesture(this, args, true).event(event),
v = select(event.view).on("mousemove.zoom", mousemoved, true).on("mouseup.zoom", mouseupped, true),
p = pointer(event, currentTarget),
x0 = event.clientX,
y0 = event.clientY;
dragDisable(event.view);
nopropagation(event);
g.mouse = [p, this.__zoom.invert(p)];
interrupt(this);
g.start();
function mousemoved(event) {
noevent(event);
if (!g.moved) {
var dx = event.clientX - x0, dy = event.clientY - y0;
g.moved = dx * dx + dy * dy > clickDistance2;
}
g.event(event)
.zoom("mouse", constrain(translate(g.that.__zoom, g.mouse[0] = pointer(event, currentTarget), g.mouse[1]), g.extent, translateExtent));
}
function mouseupped(event) {
v.on("mousemove.zoom mouseup.zoom", null);
yesdrag(event.view, g.moved);
noevent(event);
g.event(event).end();
}
}
function dblclicked(event, ...args) {
if (!filter.apply(this, arguments)) return;
var t0 = this.__zoom,
p0 = pointer(event.changedTouches ? event.changedTouches[0] : event, this),
p1 = t0.invert(p0),
k1 = t0.k * (event.shiftKey ? 0.5 : 2),
t1 = constrain(translate(scale(t0, k1), p0, p1), extent.apply(this, args), translateExtent);
noevent(event);
if (duration > 0) select(this).transition().duration(duration).call(schedule, t1, p0, event);
else select(this).call(zoom.transform, t1, p0, event);
}
function touchstarted(event, ...args) {
if (!filter.apply(this, arguments)) return;
var touches = event.touches,
n = touches.length,
g = gesture(this, args, event.changedTouches.length === n).event(event),
started, i, t, p;
nopropagation(event);
for (i = 0; i < n; ++i) {
t = touches[i], p = pointer(t, this);
p = [p, this.__zoom.invert(p), t.identifier];
if (!g.touch0) g.touch0 = p, started = true, g.taps = 1 + !!touchstarting;
else if (!g.touch1 && g.touch0[2] !== p[2]) g.touch1 = p, g.taps = 0;
}
if (touchstarting) touchstarting = clearTimeout(touchstarting);
if (started) {
if (g.taps < 2) touchfirst = p[0], touchstarting = setTimeout(function() { touchstarting = null; }, touchDelay);
interrupt(this);
g.start();
}
}
function touchmoved(event, ...args) {
if (!this.__zooming) return;
var g = gesture(this, args).event(event),
touches = event.changedTouches,
n = touches.length, i, t, p, l;
noevent(event);
for (i = 0; i < n; ++i) {
t = touches[i], p = pointer(t, this);
if (g.touch0 && g.touch0[2] === t.identifier) g.touch0[0] = p;
else if (g.touch1 && g.touch1[2] === t.identifier) g.touch1[0] = p;
}
t = g.that.__zoom;
if (g.touch1) {
var p0 = g.touch0[0], l0 = g.touch0[1],
p1 = g.touch1[0], l1 = g.touch1[1],
dp = (dp = p1[0] - p0[0]) * dp + (dp = p1[1] - p0[1]) * dp,
dl = (dl = l1[0] - l0[0]) * dl + (dl = l1[1] - l0[1]) * dl;
t = scale(t, Math.sqrt(dp / dl));
p = [(p0[0] + p1[0]) / 2, (p0[1] + p1[1]) / 2];
l = [(l0[0] + l1[0]) / 2, (l0[1] + l1[1]) / 2];
}
else if (g.touch0) p = g.touch0[0], l = g.touch0[1];
else return;
g.zoom("touch", constrain(translate(t, p, l), g.extent, translateExtent));
}
function touchended(event, ...args) {
if (!this.__zooming) return;
var g = gesture(this, args).event(event),
touches = event.changedTouches,
n = touches.length, i, t;
nopropagation(event);
if (touchending) clearTimeout(touchending);
touchending = setTimeout(function() { touchending = null; }, touchDelay);
for (i = 0; i < n; ++i) {
t = touches[i];
if (g.touch0 && g.touch0[2] === t.identifier) delete g.touch0;
else if (g.touch1 && g.touch1[2] === t.identifier) delete g.touch1;
}
if (g.touch1 && !g.touch0) g.touch0 = g.touch1, delete g.touch1;
if (g.touch0) g.touch0[1] = this.__zoom.invert(g.touch0[0]);
else {
g.end();
// If this was a dbltap, reroute to the (optional) dblclick.zoom handler.
if (g.taps === 2) {
t = pointer(t, this);
if (Math.hypot(touchfirst[0] - t[0], touchfirst[1] - t[1]) < tapDistance) {
var p = select(this).on("dblclick.zoom");
if (p) p.apply(this, arguments);
}
}
}
}
zoom.wheelDelta = function(_) {
return arguments.length ? (wheelDelta = typeof _ === "function" ? _ : constant(+_), zoom) : wheelDelta;
};
zoom.filter = function(_) {
return arguments.length ? (filter = typeof _ === "function" ? _ : constant(!!_), zoom) : filter;
};
zoom.touchable = function(_) {
return arguments.length ? (touchable = typeof _ === "function" ? _ : constant(!!_), zoom) : touchable;
};
zoom.extent = function(_) {
return arguments.length ? (extent = typeof _ === "function" ? _ : constant([[+_[0][0], +_[0][1]], [+_[1][0], +_[1][1]]]), zoom) : extent;
};
zoom.scaleExtent = function(_) {
return arguments.length ? (scaleExtent[0] = +_[0], scaleExtent[1] = +_[1], zoom) : [scaleExtent[0], scaleExtent[1]];
};
zoom.translateExtent = function(_) {
return arguments.length ? (translateExtent[0][0] = +_[0][0], translateExtent[1][0] = +_[1][0], translateExtent[0][1] = +_[0][1], translateExtent[1][1] = +_[1][1], zoom) : [[translateExtent[0][0], translateExtent[0][1]], [translateExtent[1][0], translateExtent[1][1]]];
};
zoom.constrain = function(_) {
return arguments.length ? (constrain = _, zoom) : constrain;
};
zoom.duration = function(_) {
return arguments.length ? (duration = +_, zoom) : duration;
};
zoom.interpolate = function(_) {
return arguments.length ? (interpolate = _, zoom) : interpolate;
};
zoom.on = function() {
var value = listeners.on.apply(listeners, arguments);
return value === listeners ? zoom : value;
};
zoom.clickDistance = function(_) {
return arguments.length ? (clickDistance2 = (_ = +_) * _, zoom) : Math.sqrt(clickDistance2);
};
zoom.tapDistance = function(_) {
return arguments.length ? (tapDistance = +_, zoom) : tapDistance;
};
return zoom;
}
exports.Adder = Adder;
exports.Delaunay = Delaunay;
exports.FormatSpecifier = FormatSpecifier;
exports.InternMap = InternMap;
exports.InternSet = InternSet;
exports.Node = Node$1;
exports.Path = Path$1;
exports.Voronoi = Voronoi;
exports.ZoomTransform = Transform;
exports.active = active;
exports.arc = arc;
exports.area = area;
exports.areaRadial = areaRadial;
exports.ascending = ascending$3;
exports.autoType = autoType;
exports.axisBottom = axisBottom;
exports.axisLeft = axisLeft;
exports.axisRight = axisRight;
exports.axisTop = axisTop;
exports.bin = bin;
exports.bisect = bisect;
exports.bisectCenter = bisectCenter;
exports.bisectLeft = bisectLeft;
exports.bisectRight = bisectRight;
exports.bisector = bisector;
exports.blob = blob;
exports.blur = blur;
exports.blur2 = blur2;
exports.blurImage = blurImage;
exports.brush = brush;
exports.brushSelection = brushSelection;
exports.brushX = brushX;
exports.brushY = brushY;
exports.buffer = buffer;
exports.chord = chord;
exports.chordDirected = chordDirected;
exports.chordTranspose = chordTranspose;
exports.cluster = cluster;
exports.color = color;
exports.contourDensity = density;
exports.contours = Contours;
exports.count = count$1;
exports.create = create$1;
exports.creator = creator;
exports.cross = cross$2;
exports.csv = csv;
exports.csvFormat = csvFormat;
exports.csvFormatBody = csvFormatBody;
exports.csvFormatRow = csvFormatRow;
exports.csvFormatRows = csvFormatRows;
exports.csvFormatValue = csvFormatValue;
exports.csvParse = csvParse;
exports.csvParseRows = csvParseRows;
exports.cubehelix = cubehelix$3;
exports.cumsum = cumsum;
exports.curveBasis = basis;
exports.curveBasisClosed = basisClosed;
exports.curveBasisOpen = basisOpen;
exports.curveBumpX = bumpX;
exports.curveBumpY = bumpY;
exports.curveBundle = bundle;
exports.curveCardinal = cardinal;
exports.curveCardinalClosed = cardinalClosed;
exports.curveCardinalOpen = cardinalOpen;
exports.curveCatmullRom = catmullRom;
exports.curveCatmullRomClosed = catmullRomClosed;
exports.curveCatmullRomOpen = catmullRomOpen;
exports.curveLinear = curveLinear;
exports.curveLinearClosed = linearClosed;
exports.curveMonotoneX = monotoneX;
exports.curveMonotoneY = monotoneY;
exports.curveNatural = natural;
exports.curveStep = step;
exports.curveStepAfter = stepAfter;
exports.curveStepBefore = stepBefore;
exports.descending = descending$2;
exports.deviation = deviation;
exports.difference = difference;
exports.disjoint = disjoint;
exports.dispatch = dispatch;
exports.drag = drag;
exports.dragDisable = dragDisable;
exports.dragEnable = yesdrag;
exports.dsv = dsv;
exports.dsvFormat = dsvFormat;
exports.easeBack = backInOut;
exports.easeBackIn = backIn;
exports.easeBackInOut = backInOut;
exports.easeBackOut = backOut;
exports.easeBounce = bounceOut;
exports.easeBounceIn = bounceIn;
exports.easeBounceInOut = bounceInOut;
exports.easeBounceOut = bounceOut;
exports.easeCircle = circleInOut;
exports.easeCircleIn = circleIn;
exports.easeCircleInOut = circleInOut;
exports.easeCircleOut = circleOut;
exports.easeCubic = cubicInOut;
exports.easeCubicIn = cubicIn;
exports.easeCubicInOut = cubicInOut;
exports.easeCubicOut = cubicOut;
exports.easeElastic = elasticOut;
exports.easeElasticIn = elasticIn;
exports.easeElasticInOut = elasticInOut;
exports.easeElasticOut = elasticOut;
exports.easeExp = expInOut;
exports.easeExpIn = expIn;
exports.easeExpInOut = expInOut;
exports.easeExpOut = expOut;
exports.easeLinear = linear$1;
exports.easePoly = polyInOut;
exports.easePolyIn = polyIn;
exports.easePolyInOut = polyInOut;
exports.easePolyOut = polyOut;
exports.easeQuad = quadInOut;
exports.easeQuadIn = quadIn;
exports.easeQuadInOut = quadInOut;
exports.easeQuadOut = quadOut;
exports.easeSin = sinInOut;
exports.easeSinIn = sinIn;
exports.easeSinInOut = sinInOut;
exports.easeSinOut = sinOut;
exports.every = every;
exports.extent = extent$1;
exports.fcumsum = fcumsum;
exports.filter = filter$1;
exports.flatGroup = flatGroup;
exports.flatRollup = flatRollup;
exports.forceCenter = center;
exports.forceCollide = collide;
exports.forceLink = link$2;
exports.forceManyBody = manyBody;
exports.forceRadial = radial$1;
exports.forceSimulation = simulation;
exports.forceX = x$1;
exports.forceY = y$1;
exports.formatDefaultLocale = defaultLocale$1;
exports.formatLocale = formatLocale$1;
exports.formatSpecifier = formatSpecifier;
exports.fsum = fsum;
exports.geoAlbers = albers;
exports.geoAlbersUsa = albersUsa;
exports.geoArea = area$2;
exports.geoAzimuthalEqualArea = azimuthalEqualArea;
exports.geoAzimuthalEqualAreaRaw = azimuthalEqualAreaRaw;
exports.geoAzimuthalEquidistant = azimuthalEquidistant;
exports.geoAzimuthalEquidistantRaw = azimuthalEquidistantRaw;
exports.geoBounds = bounds;
exports.geoCentroid = centroid$1;
exports.geoCircle = circle$1;
exports.geoClipAntimeridian = clipAntimeridian;
exports.geoClipCircle = clipCircle;
exports.geoClipExtent = extent;
exports.geoClipRectangle = clipRectangle;
exports.geoConicConformal = conicConformal;
exports.geoConicConformalRaw = conicConformalRaw;
exports.geoConicEqualArea = conicEqualArea;
exports.geoConicEqualAreaRaw = conicEqualAreaRaw;
exports.geoConicEquidistant = conicEquidistant;
exports.geoConicEquidistantRaw = conicEquidistantRaw;
exports.geoContains = contains$1;
exports.geoDistance = distance;
exports.geoEqualEarth = equalEarth;
exports.geoEqualEarthRaw = equalEarthRaw;
exports.geoEquirectangular = equirectangular;
exports.geoEquirectangularRaw = equirectangularRaw;
exports.geoGnomonic = gnomonic;
exports.geoGnomonicRaw = gnomonicRaw;
exports.geoGraticule = graticule;
exports.geoGraticule10 = graticule10;
exports.geoIdentity = identity$4;
exports.geoInterpolate = interpolate;
exports.geoLength = length$1;
exports.geoMercator = mercator;
exports.geoMercatorRaw = mercatorRaw;
exports.geoNaturalEarth1 = naturalEarth1;
exports.geoNaturalEarth1Raw = naturalEarth1Raw;
exports.geoOrthographic = orthographic;
exports.geoOrthographicRaw = orthographicRaw;
exports.geoPath = index$2;
exports.geoProjection = projection;
exports.geoProjectionMutator = projectionMutator;
exports.geoRotation = rotation;
exports.geoStereographic = stereographic;
exports.geoStereographicRaw = stereographicRaw;
exports.geoStream = geoStream;
exports.geoTransform = transform$1;
exports.geoTransverseMercator = transverseMercator;
exports.geoTransverseMercatorRaw = transverseMercatorRaw;
exports.gray = gray;
exports.greatest = greatest;
exports.greatestIndex = greatestIndex;
exports.group = group;
exports.groupSort = groupSort;
exports.groups = groups;
exports.hcl = hcl$2;
exports.hierarchy = hierarchy;
exports.histogram = bin;
exports.hsl = hsl$2;
exports.html = html;
exports.image = image;
exports.index = index$4;
exports.indexes = indexes;
exports.interpolate = interpolate$2;
exports.interpolateArray = array$3;
exports.interpolateBasis = basis$2;
exports.interpolateBasisClosed = basisClosed$1;
exports.interpolateBlues = Blues;
exports.interpolateBrBG = BrBG;
exports.interpolateBuGn = BuGn;
exports.interpolateBuPu = BuPu;
exports.interpolateCividis = cividis;
exports.interpolateCool = cool;
exports.interpolateCubehelix = cubehelix$2;
exports.interpolateCubehelixDefault = cubehelix;
exports.interpolateCubehelixLong = cubehelixLong;
exports.interpolateDate = date$1;
exports.interpolateDiscrete = discrete;
exports.interpolateGnBu = GnBu;
exports.interpolateGreens = Greens;
exports.interpolateGreys = Greys;
exports.interpolateHcl = hcl$1;
exports.interpolateHclLong = hclLong;
exports.interpolateHsl = hsl$1;
exports.interpolateHslLong = hslLong;
exports.interpolateHue = hue;
exports.interpolateInferno = inferno;
exports.interpolateLab = lab;
exports.interpolateMagma = magma;
exports.interpolateNumber = interpolateNumber;
exports.interpolateNumberArray = numberArray;
exports.interpolateObject = object$1;
exports.interpolateOrRd = OrRd;
exports.interpolateOranges = Oranges;
exports.interpolatePRGn = PRGn;
exports.interpolatePiYG = PiYG;
exports.interpolatePlasma = plasma;
exports.interpolatePuBu = PuBu;
exports.interpolatePuBuGn = PuBuGn;
exports.interpolatePuOr = PuOr;
exports.interpolatePuRd = PuRd;
exports.interpolatePurples = Purples;
exports.interpolateRainbow = rainbow;
exports.interpolateRdBu = RdBu;
exports.interpolateRdGy = RdGy;
exports.interpolateRdPu = RdPu;
exports.interpolateRdYlBu = RdYlBu;
exports.interpolateRdYlGn = RdYlGn;
exports.interpolateReds = Reds;
exports.interpolateRgb = interpolateRgb;
exports.interpolateRgbBasis = rgbBasis;
exports.interpolateRgbBasisClosed = rgbBasisClosed;
exports.interpolateRound = interpolateRound;
exports.interpolateSinebow = sinebow;
exports.interpolateSpectral = Spectral;
exports.interpolateString = interpolateString;
exports.interpolateTransformCss = interpolateTransformCss;
exports.interpolateTransformSvg = interpolateTransformSvg;
exports.interpolateTurbo = turbo;
exports.interpolateViridis = viridis;
exports.interpolateWarm = warm;
exports.interpolateYlGn = YlGn;
exports.interpolateYlGnBu = YlGnBu;
exports.interpolateYlOrBr = YlOrBr;
exports.interpolateYlOrRd = YlOrRd;
exports.interpolateZoom = interpolateZoom;
exports.interrupt = interrupt;
exports.intersection = intersection;
exports.interval = interval;
exports.isoFormat = formatIso$1;
exports.isoParse = parseIso$1;
exports.json = json;
exports.lab = lab$1;
exports.lch = lch;
exports.least = least;
exports.leastIndex = leastIndex;
exports.line = line;
exports.lineRadial = lineRadial$1;
exports.link = link;
exports.linkHorizontal = linkHorizontal;
exports.linkRadial = linkRadial;
exports.linkVertical = linkVertical;
exports.local = local$1;
exports.map = map$1;
exports.matcher = matcher;
exports.max = max$3;
exports.maxIndex = maxIndex;
exports.mean = mean;
exports.median = median;
exports.medianIndex = medianIndex;
exports.merge = merge;
exports.min = min$2;
exports.minIndex = minIndex;
exports.mode = mode;
exports.namespace = namespace;
exports.namespaces = namespaces;
exports.nice = nice$1;
exports.now = now;
exports.pack = index$1;
exports.packEnclose = enclose;
exports.packSiblings = siblings;
exports.pairs = pairs;
exports.partition = partition;
exports.path = path;
exports.pathRound = pathRound;
exports.permute = permute;
exports.pie = pie;
exports.piecewise = piecewise;
exports.pointRadial = pointRadial;
exports.pointer = pointer;
exports.pointers = pointers;
exports.polygonArea = area$1;
exports.polygonCentroid = centroid;
exports.polygonContains = contains;
exports.polygonHull = hull;
exports.polygonLength = length;
exports.precisionFixed = precisionFixed;
exports.precisionPrefix = precisionPrefix;
exports.precisionRound = precisionRound;
exports.quadtree = quadtree;
exports.quantile = quantile$1;
exports.quantileIndex = quantileIndex;
exports.quantileSorted = quantileSorted;
exports.quantize = quantize$1;
exports.quickselect = quickselect;
exports.radialArea = areaRadial;
exports.radialLine = lineRadial$1;
exports.randomBates = bates;
exports.randomBernoulli = bernoulli;
exports.randomBeta = beta;
exports.randomBinomial = binomial;
exports.randomCauchy = cauchy;
exports.randomExponential = exponential;
exports.randomGamma = gamma;
exports.randomGeometric = geometric;
exports.randomInt = int;
exports.randomIrwinHall = irwinHall;
exports.randomLcg = lcg;
exports.randomLogNormal = logNormal;
exports.randomLogistic = logistic;
exports.randomNormal = normal;
exports.randomPareto = pareto;
exports.randomPoisson = poisson;
exports.randomUniform = uniform;
exports.randomWeibull = weibull;
exports.range = range$2;
exports.rank = rank;
exports.reduce = reduce;
exports.reverse = reverse$1;
exports.rgb = rgb;
exports.ribbon = ribbon$1;
exports.ribbonArrow = ribbonArrow;
exports.rollup = rollup;
exports.rollups = rollups;
exports.scaleBand = band;
exports.scaleDiverging = diverging$1;
exports.scaleDivergingLog = divergingLog;
exports.scaleDivergingPow = divergingPow;
exports.scaleDivergingSqrt = divergingSqrt;
exports.scaleDivergingSymlog = divergingSymlog;
exports.scaleIdentity = identity$2;
exports.scaleImplicit = implicit;
exports.scaleLinear = linear;
exports.scaleLog = log;
exports.scaleOrdinal = ordinal;
exports.scalePoint = point$4;
exports.scalePow = pow;
exports.scaleQuantile = quantile;
exports.scaleQuantize = quantize;
exports.scaleRadial = radial;
exports.scaleSequential = sequential;
exports.scaleSequentialLog = sequentialLog;
exports.scaleSequentialPow = sequentialPow;
exports.scaleSequentialQuantile = sequentialQuantile;
exports.scaleSequentialSqrt = sequentialSqrt;
exports.scaleSequentialSymlog = sequentialSymlog;
exports.scaleSqrt = sqrt$1;
exports.scaleSymlog = symlog;
exports.scaleThreshold = threshold;
exports.scaleTime = time;
exports.scaleUtc = utcTime;
exports.scan = scan;
exports.schemeAccent = Accent;
exports.schemeBlues = scheme$5;
exports.schemeBrBG = scheme$q;
exports.schemeBuGn = scheme$h;
exports.schemeBuPu = scheme$g;
exports.schemeCategory10 = category10;
exports.schemeDark2 = Dark2;
exports.schemeGnBu = scheme$f;
exports.schemeGreens = scheme$4;
exports.schemeGreys = scheme$3;
exports.schemeObservable10 = observable10;
exports.schemeOrRd = scheme$e;
exports.schemeOranges = scheme;
exports.schemePRGn = scheme$p;
exports.schemePaired = Paired;
exports.schemePastel1 = Pastel1;
exports.schemePastel2 = Pastel2;
exports.schemePiYG = scheme$o;
exports.schemePuBu = scheme$c;
exports.schemePuBuGn = scheme$d;
exports.schemePuOr = scheme$n;
exports.schemePuRd = scheme$b;
exports.schemePurples = scheme$2;
exports.schemeRdBu = scheme$m;
exports.schemeRdGy = scheme$l;
exports.schemeRdPu = scheme$a;
exports.schemeRdYlBu = scheme$k;
exports.schemeRdYlGn = scheme$j;
exports.schemeReds = scheme$1;
exports.schemeSet1 = Set1;
exports.schemeSet2 = Set2;
exports.schemeSet3 = Set3;
exports.schemeSpectral = scheme$i;
exports.schemeTableau10 = Tableau10;
exports.schemeYlGn = scheme$8;
exports.schemeYlGnBu = scheme$9;
exports.schemeYlOrBr = scheme$7;
exports.schemeYlOrRd = scheme$6;
exports.select = select;
exports.selectAll = selectAll;
exports.selection = selection;
exports.selector = selector;
exports.selectorAll = selectorAll;
exports.shuffle = shuffle$1;
exports.shuffler = shuffler;
exports.some = some;
exports.sort = sort;
exports.stack = stack;
exports.stackOffsetDiverging = diverging;
exports.stackOffsetExpand = expand;
exports.stackOffsetNone = none$1;
exports.stackOffsetSilhouette = silhouette;
exports.stackOffsetWiggle = wiggle;
exports.stackOrderAppearance = appearance;
exports.stackOrderAscending = ascending;
exports.stackOrderDescending = descending;
exports.stackOrderInsideOut = insideOut;
exports.stackOrderNone = none;
exports.stackOrderReverse = reverse;
exports.stratify = stratify;
exports.style = styleValue;
exports.subset = subset;
exports.sum = sum$2;
exports.superset = superset;
exports.svg = svg;
exports.symbol = Symbol$1;
exports.symbolAsterisk = asterisk;
exports.symbolCircle = circle;
exports.symbolCross = cross;
exports.symbolDiamond = diamond;
exports.symbolDiamond2 = diamond2;
exports.symbolPlus = plus;
exports.symbolSquare = square;
exports.symbolSquare2 = square2;
exports.symbolStar = star;
exports.symbolTimes = times;
exports.symbolTriangle = triangle;
exports.symbolTriangle2 = triangle2;
exports.symbolWye = wye;
exports.symbolX = times;
exports.symbols = symbolsFill;
exports.symbolsFill = symbolsFill;
exports.symbolsStroke = symbolsStroke;
exports.text = text;
exports.thresholdFreedmanDiaconis = thresholdFreedmanDiaconis;
exports.thresholdScott = thresholdScott;
exports.thresholdSturges = thresholdSturges;
exports.tickFormat = tickFormat;
exports.tickIncrement = tickIncrement;
exports.tickStep = tickStep;
exports.ticks = ticks;
exports.timeDay = timeDay;
exports.timeDays = timeDays;
exports.timeFormatDefaultLocale = defaultLocale;
exports.timeFormatLocale = formatLocale;
exports.timeFriday = timeFriday;
exports.timeFridays = timeFridays;
exports.timeHour = timeHour;
exports.timeHours = timeHours;
exports.timeInterval = timeInterval;
exports.timeMillisecond = millisecond;
exports.timeMilliseconds = milliseconds;
exports.timeMinute = timeMinute;
exports.timeMinutes = timeMinutes;
exports.timeMonday = timeMonday;
exports.timeMondays = timeMondays;
exports.timeMonth = timeMonth;
exports.timeMonths = timeMonths;
exports.timeSaturday = timeSaturday;
exports.timeSaturdays = timeSaturdays;
exports.timeSecond = second;
exports.timeSeconds = seconds;
exports.timeSunday = timeSunday;
exports.timeSundays = timeSundays;
exports.timeThursday = timeThursday;
exports.timeThursdays = timeThursdays;
exports.timeTickInterval = timeTickInterval;
exports.timeTicks = timeTicks;
exports.timeTuesday = timeTuesday;
exports.timeTuesdays = timeTuesdays;
exports.timeWednesday = timeWednesday;
exports.timeWednesdays = timeWednesdays;
exports.timeWeek = timeSunday;
exports.timeWeeks = timeSundays;
exports.timeYear = timeYear;
exports.timeYears = timeYears;
exports.timeout = timeout;
exports.timer = timer;
exports.timerFlush = timerFlush;
exports.transition = transition;
exports.transpose = transpose;
exports.tree = tree;
exports.treemap = index;
exports.treemapBinary = binary;
exports.treemapDice = treemapDice;
exports.treemapResquarify = resquarify;
exports.treemapSlice = treemapSlice;
exports.treemapSliceDice = sliceDice;
exports.treemapSquarify = squarify;
exports.tsv = tsv;
exports.tsvFormat = tsvFormat;
exports.tsvFormatBody = tsvFormatBody;
exports.tsvFormatRow = tsvFormatRow;
exports.tsvFormatRows = tsvFormatRows;
exports.tsvFormatValue = tsvFormatValue;
exports.tsvParse = tsvParse;
exports.tsvParseRows = tsvParseRows;
exports.union = union;
exports.unixDay = unixDay;
exports.unixDays = unixDays;
exports.utcDay = utcDay;
exports.utcDays = utcDays;
exports.utcFriday = utcFriday;
exports.utcFridays = utcFridays;
exports.utcHour = utcHour;
exports.utcHours = utcHours;
exports.utcMillisecond = millisecond;
exports.utcMilliseconds = milliseconds;
exports.utcMinute = utcMinute;
exports.utcMinutes = utcMinutes;
exports.utcMonday = utcMonday;
exports.utcMondays = utcMondays;
exports.utcMonth = utcMonth;
exports.utcMonths = utcMonths;
exports.utcSaturday = utcSaturday;
exports.utcSaturdays = utcSaturdays;
exports.utcSecond = second;
exports.utcSeconds = seconds;
exports.utcSunday = utcSunday;
exports.utcSundays = utcSundays;
exports.utcThursday = utcThursday;
exports.utcThursdays = utcThursdays;
exports.utcTickInterval = utcTickInterval;
exports.utcTicks = utcTicks;
exports.utcTuesday = utcTuesday;
exports.utcTuesdays = utcTuesdays;
exports.utcWednesday = utcWednesday;
exports.utcWednesdays = utcWednesdays;
exports.utcWeek = utcSunday;
exports.utcWeeks = utcSundays;
exports.utcYear = utcYear;
exports.utcYears = utcYears;
exports.variance = variance;
exports.version = version;
exports.window = defaultView;
exports.xml = xml;
exports.zip = zip;
exports.zoom = zoom;
exports.zoomIdentity = identity;
exports.zoomTransform = transform;
}));