75 lines
2.7 KiB
JavaScript
75 lines
2.7 KiB
JavaScript
|
import {Adder} from "d3-array";
|
|||
|
import {cartesian, cartesianCross, cartesianNormalizeInPlace} from "./cartesian.js";
|
|||
|
import {abs, asin, atan2, cos, epsilon, epsilon2, halfPi, pi, quarterPi, sign, sin, tau} from "./math.js";
|
|||
|
|
|||
|
function longitude(point) {
|
|||
|
return abs(point[0]) <= pi ? point[0] : sign(point[0]) * ((abs(point[0]) + pi) % tau - pi);
|
|||
|
}
|
|||
|
|
|||
|
export default function(polygon, point) {
|
|||
|
var lambda = longitude(point),
|
|||
|
phi = point[1],
|
|||
|
sinPhi = sin(phi),
|
|||
|
normal = [sin(lambda), -cos(lambda), 0],
|
|||
|
angle = 0,
|
|||
|
winding = 0;
|
|||
|
|
|||
|
var sum = new Adder();
|
|||
|
|
|||
|
if (sinPhi === 1) phi = halfPi + epsilon;
|
|||
|
else if (sinPhi === -1) phi = -halfPi - epsilon;
|
|||
|
|
|||
|
for (var i = 0, n = polygon.length; i < n; ++i) {
|
|||
|
if (!(m = (ring = polygon[i]).length)) continue;
|
|||
|
var ring,
|
|||
|
m,
|
|||
|
point0 = ring[m - 1],
|
|||
|
lambda0 = longitude(point0),
|
|||
|
phi0 = point0[1] / 2 + quarterPi,
|
|||
|
sinPhi0 = sin(phi0),
|
|||
|
cosPhi0 = cos(phi0);
|
|||
|
|
|||
|
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
|
|||
|
var point1 = ring[j],
|
|||
|
lambda1 = longitude(point1),
|
|||
|
phi1 = point1[1] / 2 + quarterPi,
|
|||
|
sinPhi1 = sin(phi1),
|
|||
|
cosPhi1 = cos(phi1),
|
|||
|
delta = lambda1 - lambda0,
|
|||
|
sign = delta >= 0 ? 1 : -1,
|
|||
|
absDelta = sign * delta,
|
|||
|
antimeridian = absDelta > pi,
|
|||
|
k = sinPhi0 * sinPhi1;
|
|||
|
|
|||
|
sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
|
|||
|
angle += antimeridian ? delta + sign * tau : delta;
|
|||
|
|
|||
|
// Are the longitudes either side of the point’s meridian (lambda),
|
|||
|
// and are the latitudes smaller than the parallel (phi)?
|
|||
|
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
|
|||
|
var arc = cartesianCross(cartesian(point0), cartesian(point1));
|
|||
|
cartesianNormalizeInPlace(arc);
|
|||
|
var intersection = cartesianCross(normal, arc);
|
|||
|
cartesianNormalizeInPlace(intersection);
|
|||
|
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
|
|||
|
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
|
|||
|
winding += antimeridian ^ delta >= 0 ? 1 : -1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// First, determine whether the South pole is inside or outside:
|
|||
|
//
|
|||
|
// It is inside if:
|
|||
|
// * the polygon winds around it in a clockwise direction.
|
|||
|
// * the polygon does not (cumulatively) wind around it, but has a negative
|
|||
|
// (counter-clockwise) area.
|
|||
|
//
|
|||
|
// Second, count the (signed) number of times a segment crosses a lambda
|
|||
|
// from the point to the South pole. If it is zero, then the point is the
|
|||
|
// same side as the South pole.
|
|||
|
|
|||
|
return (angle < -epsilon || angle < epsilon && sum < -epsilon2) ^ (winding & 1);
|
|||
|
}
|