77 lines
2 KiB
JavaScript
77 lines
2 KiB
JavaScript
|
import {Adder} from "d3-array";
|
|||
|
import {atan2, cos, quarterPi, radians, sin, tau} from "./math.js";
|
|||
|
import noop from "./noop.js";
|
|||
|
import stream from "./stream.js";
|
|||
|
|
|||
|
export var areaRingSum = new Adder();
|
|||
|
|
|||
|
// hello?
|
|||
|
|
|||
|
var areaSum = new Adder(),
|
|||
|
lambda00,
|
|||
|
phi00,
|
|||
|
lambda0,
|
|||
|
cosPhi0,
|
|||
|
sinPhi0;
|
|||
|
|
|||
|
export var areaStream = {
|
|||
|
point: noop,
|
|||
|
lineStart: noop,
|
|||
|
lineEnd: noop,
|
|||
|
polygonStart: function() {
|
|||
|
areaRingSum = new Adder();
|
|||
|
areaStream.lineStart = areaRingStart;
|
|||
|
areaStream.lineEnd = areaRingEnd;
|
|||
|
},
|
|||
|
polygonEnd: function() {
|
|||
|
var areaRing = +areaRingSum;
|
|||
|
areaSum.add(areaRing < 0 ? tau + areaRing : areaRing);
|
|||
|
this.lineStart = this.lineEnd = this.point = noop;
|
|||
|
},
|
|||
|
sphere: function() {
|
|||
|
areaSum.add(tau);
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
function areaRingStart() {
|
|||
|
areaStream.point = areaPointFirst;
|
|||
|
}
|
|||
|
|
|||
|
function areaRingEnd() {
|
|||
|
areaPoint(lambda00, phi00);
|
|||
|
}
|
|||
|
|
|||
|
function areaPointFirst(lambda, phi) {
|
|||
|
areaStream.point = areaPoint;
|
|||
|
lambda00 = lambda, phi00 = phi;
|
|||
|
lambda *= radians, phi *= radians;
|
|||
|
lambda0 = lambda, cosPhi0 = cos(phi = phi / 2 + quarterPi), sinPhi0 = sin(phi);
|
|||
|
}
|
|||
|
|
|||
|
function areaPoint(lambda, phi) {
|
|||
|
lambda *= radians, phi *= radians;
|
|||
|
phi = phi / 2 + quarterPi; // half the angular distance from south pole
|
|||
|
|
|||
|
// Spherical excess E for a spherical triangle with vertices: south pole,
|
|||
|
// previous point, current point. Uses a formula derived from Cagnoli’s
|
|||
|
// theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
|
|||
|
var dLambda = lambda - lambda0,
|
|||
|
sdLambda = dLambda >= 0 ? 1 : -1,
|
|||
|
adLambda = sdLambda * dLambda,
|
|||
|
cosPhi = cos(phi),
|
|||
|
sinPhi = sin(phi),
|
|||
|
k = sinPhi0 * sinPhi,
|
|||
|
u = cosPhi0 * cosPhi + k * cos(adLambda),
|
|||
|
v = k * sdLambda * sin(adLambda);
|
|||
|
areaRingSum.add(atan2(v, u));
|
|||
|
|
|||
|
// Advance the previous points.
|
|||
|
lambda0 = lambda, cosPhi0 = cosPhi, sinPhi0 = sinPhi;
|
|||
|
}
|
|||
|
|
|||
|
export default function(object) {
|
|||
|
areaSum = new Adder();
|
|||
|
stream(object, areaStream);
|
|||
|
return areaSum * 2;
|
|||
|
}
|