// https://d3js.org/d3-polygon/ v3.0.1 Copyright 2010-2021 Mike Bostock (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {})); }(this, (function (exports) { 'use strict'; function area(polygon) { var i = -1, n = polygon.length, a, b = polygon[n - 1], area = 0; while (++i < n) { a = b; b = polygon[i]; area += a[1] * b[0] - a[0] * b[1]; } return area / 2; } function centroid(polygon) { var i = -1, n = polygon.length, x = 0, y = 0, a, b = polygon[n - 1], c, k = 0; while (++i < n) { a = b; b = polygon[i]; k += c = a[0] * b[1] - b[0] * a[1]; x += (a[0] + b[0]) * c; y += (a[1] + b[1]) * c; } return k *= 3, [x / k, y / k]; } // Returns the 2D cross product of AB and AC vectors, i.e., the z-component of // the 3D cross product in a quadrant I Cartesian coordinate system (+x is // right, +y is up). Returns a positive value if ABC is counter-clockwise, // negative if clockwise, and zero if the points are collinear. function cross(a, b, c) { return (b[0] - a[0]) * (c[1] - a[1]) - (b[1] - a[1]) * (c[0] - a[0]); } function lexicographicOrder(a, b) { return a[0] - b[0] || a[1] - b[1]; } // Computes the upper convex hull per the monotone chain algorithm. // Assumes points.length >= 3, is sorted by x, unique in y. // Returns an array of indices into points in left-to-right order. function computeUpperHullIndexes(points) { const n = points.length, indexes = [0, 1]; let size = 2, i; for (i = 2; i < n; ++i) { while (size > 1 && cross(points[indexes[size - 2]], points[indexes[size - 1]], points[i]) <= 0) --size; indexes[size++] = i; } return indexes.slice(0, size); // remove popped points } function hull(points) { if ((n = points.length) < 3) return null; var i, n, sortedPoints = new Array(n), flippedPoints = new Array(n); for (i = 0; i < n; ++i) sortedPoints[i] = [+points[i][0], +points[i][1], i]; sortedPoints.sort(lexicographicOrder); for (i = 0; i < n; ++i) flippedPoints[i] = [sortedPoints[i][0], -sortedPoints[i][1]]; var upperIndexes = computeUpperHullIndexes(sortedPoints), lowerIndexes = computeUpperHullIndexes(flippedPoints); // Construct the hull polygon, removing possible duplicate endpoints. var skipLeft = lowerIndexes[0] === upperIndexes[0], skipRight = lowerIndexes[lowerIndexes.length - 1] === upperIndexes[upperIndexes.length - 1], hull = []; // Add upper hull in right-to-l order. // Then add lower hull in left-to-right order. for (i = upperIndexes.length - 1; i >= 0; --i) hull.push(points[sortedPoints[upperIndexes[i]][2]]); for (i = +skipLeft; i < lowerIndexes.length - skipRight; ++i) hull.push(points[sortedPoints[lowerIndexes[i]][2]]); return hull; } function contains(polygon, point) { var n = polygon.length, p = polygon[n - 1], x = point[0], y = point[1], x0 = p[0], y0 = p[1], x1, y1, inside = false; for (var i = 0; i < n; ++i) { p = polygon[i], x1 = p[0], y1 = p[1]; if (((y1 > y) !== (y0 > y)) && (x < (x0 - x1) * (y - y1) / (y0 - y1) + x1)) inside = !inside; x0 = x1, y0 = y1; } return inside; } function length(polygon) { var i = -1, n = polygon.length, b = polygon[n - 1], xa, ya, xb = b[0], yb = b[1], perimeter = 0; while (++i < n) { xa = xb; ya = yb; b = polygon[i]; xb = b[0]; yb = b[1]; xa -= xb; ya -= yb; perimeter += Math.hypot(xa, ya); } return perimeter; } exports.polygonArea = area; exports.polygonCentroid = centroid; exports.polygonContains = contains; exports.polygonHull = hull; exports.polygonLength = length; Object.defineProperty(exports, '__esModule', { value: true }); })));