1410 lines
36 KiB
JavaScript
1410 lines
36 KiB
JavaScript
// https://d3js.org/d3-hierarchy/ v3.1.2 Copyright 2010-2021 Mike Bostock
|
||
(function (global, factory) {
|
||
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
||
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
||
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
|
||
})(this, (function (exports) { 'use strict';
|
||
|
||
function defaultSeparation$1(a, b) {
|
||
return a.parent === b.parent ? 1 : 2;
|
||
}
|
||
|
||
function meanX(children) {
|
||
return children.reduce(meanXReduce, 0) / children.length;
|
||
}
|
||
|
||
function meanXReduce(x, c) {
|
||
return x + c.x;
|
||
}
|
||
|
||
function maxY(children) {
|
||
return 1 + children.reduce(maxYReduce, 0);
|
||
}
|
||
|
||
function maxYReduce(y, c) {
|
||
return Math.max(y, c.y);
|
||
}
|
||
|
||
function leafLeft(node) {
|
||
var children;
|
||
while (children = node.children) node = children[0];
|
||
return node;
|
||
}
|
||
|
||
function leafRight(node) {
|
||
var children;
|
||
while (children = node.children) node = children[children.length - 1];
|
||
return node;
|
||
}
|
||
|
||
function cluster() {
|
||
var separation = defaultSeparation$1,
|
||
dx = 1,
|
||
dy = 1,
|
||
nodeSize = false;
|
||
|
||
function cluster(root) {
|
||
var previousNode,
|
||
x = 0;
|
||
|
||
// First walk, computing the initial x & y values.
|
||
root.eachAfter(function(node) {
|
||
var children = node.children;
|
||
if (children) {
|
||
node.x = meanX(children);
|
||
node.y = maxY(children);
|
||
} else {
|
||
node.x = previousNode ? x += separation(node, previousNode) : 0;
|
||
node.y = 0;
|
||
previousNode = node;
|
||
}
|
||
});
|
||
|
||
var left = leafLeft(root),
|
||
right = leafRight(root),
|
||
x0 = left.x - separation(left, right) / 2,
|
||
x1 = right.x + separation(right, left) / 2;
|
||
|
||
// Second walk, normalizing x & y to the desired size.
|
||
return root.eachAfter(nodeSize ? function(node) {
|
||
node.x = (node.x - root.x) * dx;
|
||
node.y = (root.y - node.y) * dy;
|
||
} : function(node) {
|
||
node.x = (node.x - x0) / (x1 - x0) * dx;
|
||
node.y = (1 - (root.y ? node.y / root.y : 1)) * dy;
|
||
});
|
||
}
|
||
|
||
cluster.separation = function(x) {
|
||
return arguments.length ? (separation = x, cluster) : separation;
|
||
};
|
||
|
||
cluster.size = function(x) {
|
||
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? null : [dx, dy]);
|
||
};
|
||
|
||
cluster.nodeSize = function(x) {
|
||
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? [dx, dy] : null);
|
||
};
|
||
|
||
return cluster;
|
||
}
|
||
|
||
function count(node) {
|
||
var sum = 0,
|
||
children = node.children,
|
||
i = children && children.length;
|
||
if (!i) sum = 1;
|
||
else while (--i >= 0) sum += children[i].value;
|
||
node.value = sum;
|
||
}
|
||
|
||
function node_count() {
|
||
return this.eachAfter(count);
|
||
}
|
||
|
||
function node_each(callback, that) {
|
||
let index = -1;
|
||
for (const node of this) {
|
||
callback.call(that, node, ++index, this);
|
||
}
|
||
return this;
|
||
}
|
||
|
||
function node_eachBefore(callback, that) {
|
||
var node = this, nodes = [node], children, i, index = -1;
|
||
while (node = nodes.pop()) {
|
||
callback.call(that, node, ++index, this);
|
||
if (children = node.children) {
|
||
for (i = children.length - 1; i >= 0; --i) {
|
||
nodes.push(children[i]);
|
||
}
|
||
}
|
||
}
|
||
return this;
|
||
}
|
||
|
||
function node_eachAfter(callback, that) {
|
||
var node = this, nodes = [node], next = [], children, i, n, index = -1;
|
||
while (node = nodes.pop()) {
|
||
next.push(node);
|
||
if (children = node.children) {
|
||
for (i = 0, n = children.length; i < n; ++i) {
|
||
nodes.push(children[i]);
|
||
}
|
||
}
|
||
}
|
||
while (node = next.pop()) {
|
||
callback.call(that, node, ++index, this);
|
||
}
|
||
return this;
|
||
}
|
||
|
||
function node_find(callback, that) {
|
||
let index = -1;
|
||
for (const node of this) {
|
||
if (callback.call(that, node, ++index, this)) {
|
||
return node;
|
||
}
|
||
}
|
||
}
|
||
|
||
function node_sum(value) {
|
||
return this.eachAfter(function(node) {
|
||
var sum = +value(node.data) || 0,
|
||
children = node.children,
|
||
i = children && children.length;
|
||
while (--i >= 0) sum += children[i].value;
|
||
node.value = sum;
|
||
});
|
||
}
|
||
|
||
function node_sort(compare) {
|
||
return this.eachBefore(function(node) {
|
||
if (node.children) {
|
||
node.children.sort(compare);
|
||
}
|
||
});
|
||
}
|
||
|
||
function node_path(end) {
|
||
var start = this,
|
||
ancestor = leastCommonAncestor(start, end),
|
||
nodes = [start];
|
||
while (start !== ancestor) {
|
||
start = start.parent;
|
||
nodes.push(start);
|
||
}
|
||
var k = nodes.length;
|
||
while (end !== ancestor) {
|
||
nodes.splice(k, 0, end);
|
||
end = end.parent;
|
||
}
|
||
return nodes;
|
||
}
|
||
|
||
function leastCommonAncestor(a, b) {
|
||
if (a === b) return a;
|
||
var aNodes = a.ancestors(),
|
||
bNodes = b.ancestors(),
|
||
c = null;
|
||
a = aNodes.pop();
|
||
b = bNodes.pop();
|
||
while (a === b) {
|
||
c = a;
|
||
a = aNodes.pop();
|
||
b = bNodes.pop();
|
||
}
|
||
return c;
|
||
}
|
||
|
||
function node_ancestors() {
|
||
var node = this, nodes = [node];
|
||
while (node = node.parent) {
|
||
nodes.push(node);
|
||
}
|
||
return nodes;
|
||
}
|
||
|
||
function node_descendants() {
|
||
return Array.from(this);
|
||
}
|
||
|
||
function node_leaves() {
|
||
var leaves = [];
|
||
this.eachBefore(function(node) {
|
||
if (!node.children) {
|
||
leaves.push(node);
|
||
}
|
||
});
|
||
return leaves;
|
||
}
|
||
|
||
function node_links() {
|
||
var root = this, links = [];
|
||
root.each(function(node) {
|
||
if (node !== root) { // Don’t include the root’s parent, if any.
|
||
links.push({source: node.parent, target: node});
|
||
}
|
||
});
|
||
return links;
|
||
}
|
||
|
||
function* node_iterator() {
|
||
var node = this, current, next = [node], children, i, n;
|
||
do {
|
||
current = next.reverse(), next = [];
|
||
while (node = current.pop()) {
|
||
yield node;
|
||
if (children = node.children) {
|
||
for (i = 0, n = children.length; i < n; ++i) {
|
||
next.push(children[i]);
|
||
}
|
||
}
|
||
}
|
||
} while (next.length);
|
||
}
|
||
|
||
function hierarchy(data, children) {
|
||
if (data instanceof Map) {
|
||
data = [undefined, data];
|
||
if (children === undefined) children = mapChildren;
|
||
} else if (children === undefined) {
|
||
children = objectChildren;
|
||
}
|
||
|
||
var root = new Node$1(data),
|
||
node,
|
||
nodes = [root],
|
||
child,
|
||
childs,
|
||
i,
|
||
n;
|
||
|
||
while (node = nodes.pop()) {
|
||
if ((childs = children(node.data)) && (n = (childs = Array.from(childs)).length)) {
|
||
node.children = childs;
|
||
for (i = n - 1; i >= 0; --i) {
|
||
nodes.push(child = childs[i] = new Node$1(childs[i]));
|
||
child.parent = node;
|
||
child.depth = node.depth + 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
return root.eachBefore(computeHeight);
|
||
}
|
||
|
||
function node_copy() {
|
||
return hierarchy(this).eachBefore(copyData);
|
||
}
|
||
|
||
function objectChildren(d) {
|
||
return d.children;
|
||
}
|
||
|
||
function mapChildren(d) {
|
||
return Array.isArray(d) ? d[1] : null;
|
||
}
|
||
|
||
function copyData(node) {
|
||
if (node.data.value !== undefined) node.value = node.data.value;
|
||
node.data = node.data.data;
|
||
}
|
||
|
||
function computeHeight(node) {
|
||
var height = 0;
|
||
do node.height = height;
|
||
while ((node = node.parent) && (node.height < ++height));
|
||
}
|
||
|
||
function Node$1(data) {
|
||
this.data = data;
|
||
this.depth =
|
||
this.height = 0;
|
||
this.parent = null;
|
||
}
|
||
|
||
Node$1.prototype = hierarchy.prototype = {
|
||
constructor: Node$1,
|
||
count: node_count,
|
||
each: node_each,
|
||
eachAfter: node_eachAfter,
|
||
eachBefore: node_eachBefore,
|
||
find: node_find,
|
||
sum: node_sum,
|
||
sort: node_sort,
|
||
path: node_path,
|
||
ancestors: node_ancestors,
|
||
descendants: node_descendants,
|
||
leaves: node_leaves,
|
||
links: node_links,
|
||
copy: node_copy,
|
||
[Symbol.iterator]: node_iterator
|
||
};
|
||
|
||
function optional(f) {
|
||
return f == null ? null : required(f);
|
||
}
|
||
|
||
function required(f) {
|
||
if (typeof f !== "function") throw new Error;
|
||
return f;
|
||
}
|
||
|
||
function constantZero() {
|
||
return 0;
|
||
}
|
||
|
||
function constant(x) {
|
||
return function() {
|
||
return x;
|
||
};
|
||
}
|
||
|
||
// https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
|
||
const a = 1664525;
|
||
const c = 1013904223;
|
||
const m = 4294967296; // 2^32
|
||
|
||
function lcg() {
|
||
let s = 1;
|
||
return () => (s = (a * s + c) % m) / m;
|
||
}
|
||
|
||
function array(x) {
|
||
return typeof x === "object" && "length" in x
|
||
? x // Array, TypedArray, NodeList, array-like
|
||
: Array.from(x); // Map, Set, iterable, string, or anything else
|
||
}
|
||
|
||
function shuffle(array, random) {
|
||
let m = array.length,
|
||
t,
|
||
i;
|
||
|
||
while (m) {
|
||
i = random() * m-- | 0;
|
||
t = array[m];
|
||
array[m] = array[i];
|
||
array[i] = t;
|
||
}
|
||
|
||
return array;
|
||
}
|
||
|
||
function enclose(circles) {
|
||
return packEncloseRandom(circles, lcg());
|
||
}
|
||
|
||
function packEncloseRandom(circles, random) {
|
||
var i = 0, n = (circles = shuffle(Array.from(circles), random)).length, B = [], p, e;
|
||
|
||
while (i < n) {
|
||
p = circles[i];
|
||
if (e && enclosesWeak(e, p)) ++i;
|
||
else e = encloseBasis(B = extendBasis(B, p)), i = 0;
|
||
}
|
||
|
||
return e;
|
||
}
|
||
|
||
function extendBasis(B, p) {
|
||
var i, j;
|
||
|
||
if (enclosesWeakAll(p, B)) return [p];
|
||
|
||
// If we get here then B must have at least one element.
|
||
for (i = 0; i < B.length; ++i) {
|
||
if (enclosesNot(p, B[i])
|
||
&& enclosesWeakAll(encloseBasis2(B[i], p), B)) {
|
||
return [B[i], p];
|
||
}
|
||
}
|
||
|
||
// If we get here then B must have at least two elements.
|
||
for (i = 0; i < B.length - 1; ++i) {
|
||
for (j = i + 1; j < B.length; ++j) {
|
||
if (enclosesNot(encloseBasis2(B[i], B[j]), p)
|
||
&& enclosesNot(encloseBasis2(B[i], p), B[j])
|
||
&& enclosesNot(encloseBasis2(B[j], p), B[i])
|
||
&& enclosesWeakAll(encloseBasis3(B[i], B[j], p), B)) {
|
||
return [B[i], B[j], p];
|
||
}
|
||
}
|
||
}
|
||
|
||
// If we get here then something is very wrong.
|
||
throw new Error;
|
||
}
|
||
|
||
function enclosesNot(a, b) {
|
||
var dr = a.r - b.r, dx = b.x - a.x, dy = b.y - a.y;
|
||
return dr < 0 || dr * dr < dx * dx + dy * dy;
|
||
}
|
||
|
||
function enclosesWeak(a, b) {
|
||
var dr = a.r - b.r + Math.max(a.r, b.r, 1) * 1e-9, dx = b.x - a.x, dy = b.y - a.y;
|
||
return dr > 0 && dr * dr > dx * dx + dy * dy;
|
||
}
|
||
|
||
function enclosesWeakAll(a, B) {
|
||
for (var i = 0; i < B.length; ++i) {
|
||
if (!enclosesWeak(a, B[i])) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
function encloseBasis(B) {
|
||
switch (B.length) {
|
||
case 1: return encloseBasis1(B[0]);
|
||
case 2: return encloseBasis2(B[0], B[1]);
|
||
case 3: return encloseBasis3(B[0], B[1], B[2]);
|
||
}
|
||
}
|
||
|
||
function encloseBasis1(a) {
|
||
return {
|
||
x: a.x,
|
||
y: a.y,
|
||
r: a.r
|
||
};
|
||
}
|
||
|
||
function encloseBasis2(a, b) {
|
||
var x1 = a.x, y1 = a.y, r1 = a.r,
|
||
x2 = b.x, y2 = b.y, r2 = b.r,
|
||
x21 = x2 - x1, y21 = y2 - y1, r21 = r2 - r1,
|
||
l = Math.sqrt(x21 * x21 + y21 * y21);
|
||
return {
|
||
x: (x1 + x2 + x21 / l * r21) / 2,
|
||
y: (y1 + y2 + y21 / l * r21) / 2,
|
||
r: (l + r1 + r2) / 2
|
||
};
|
||
}
|
||
|
||
function encloseBasis3(a, b, c) {
|
||
var x1 = a.x, y1 = a.y, r1 = a.r,
|
||
x2 = b.x, y2 = b.y, r2 = b.r,
|
||
x3 = c.x, y3 = c.y, r3 = c.r,
|
||
a2 = x1 - x2,
|
||
a3 = x1 - x3,
|
||
b2 = y1 - y2,
|
||
b3 = y1 - y3,
|
||
c2 = r2 - r1,
|
||
c3 = r3 - r1,
|
||
d1 = x1 * x1 + y1 * y1 - r1 * r1,
|
||
d2 = d1 - x2 * x2 - y2 * y2 + r2 * r2,
|
||
d3 = d1 - x3 * x3 - y3 * y3 + r3 * r3,
|
||
ab = a3 * b2 - a2 * b3,
|
||
xa = (b2 * d3 - b3 * d2) / (ab * 2) - x1,
|
||
xb = (b3 * c2 - b2 * c3) / ab,
|
||
ya = (a3 * d2 - a2 * d3) / (ab * 2) - y1,
|
||
yb = (a2 * c3 - a3 * c2) / ab,
|
||
A = xb * xb + yb * yb - 1,
|
||
B = 2 * (r1 + xa * xb + ya * yb),
|
||
C = xa * xa + ya * ya - r1 * r1,
|
||
r = -(Math.abs(A) > 1e-6 ? (B + Math.sqrt(B * B - 4 * A * C)) / (2 * A) : C / B);
|
||
return {
|
||
x: x1 + xa + xb * r,
|
||
y: y1 + ya + yb * r,
|
||
r: r
|
||
};
|
||
}
|
||
|
||
function place(b, a, c) {
|
||
var dx = b.x - a.x, x, a2,
|
||
dy = b.y - a.y, y, b2,
|
||
d2 = dx * dx + dy * dy;
|
||
if (d2) {
|
||
a2 = a.r + c.r, a2 *= a2;
|
||
b2 = b.r + c.r, b2 *= b2;
|
||
if (a2 > b2) {
|
||
x = (d2 + b2 - a2) / (2 * d2);
|
||
y = Math.sqrt(Math.max(0, b2 / d2 - x * x));
|
||
c.x = b.x - x * dx - y * dy;
|
||
c.y = b.y - x * dy + y * dx;
|
||
} else {
|
||
x = (d2 + a2 - b2) / (2 * d2);
|
||
y = Math.sqrt(Math.max(0, a2 / d2 - x * x));
|
||
c.x = a.x + x * dx - y * dy;
|
||
c.y = a.y + x * dy + y * dx;
|
||
}
|
||
} else {
|
||
c.x = a.x + c.r;
|
||
c.y = a.y;
|
||
}
|
||
}
|
||
|
||
function intersects(a, b) {
|
||
var dr = a.r + b.r - 1e-6, dx = b.x - a.x, dy = b.y - a.y;
|
||
return dr > 0 && dr * dr > dx * dx + dy * dy;
|
||
}
|
||
|
||
function score(node) {
|
||
var a = node._,
|
||
b = node.next._,
|
||
ab = a.r + b.r,
|
||
dx = (a.x * b.r + b.x * a.r) / ab,
|
||
dy = (a.y * b.r + b.y * a.r) / ab;
|
||
return dx * dx + dy * dy;
|
||
}
|
||
|
||
function Node(circle) {
|
||
this._ = circle;
|
||
this.next = null;
|
||
this.previous = null;
|
||
}
|
||
|
||
function packSiblingsRandom(circles, random) {
|
||
if (!(n = (circles = array(circles)).length)) return 0;
|
||
|
||
var a, b, c, n, aa, ca, i, j, k, sj, sk;
|
||
|
||
// Place the first circle.
|
||
a = circles[0], a.x = 0, a.y = 0;
|
||
if (!(n > 1)) return a.r;
|
||
|
||
// Place the second circle.
|
||
b = circles[1], a.x = -b.r, b.x = a.r, b.y = 0;
|
||
if (!(n > 2)) return a.r + b.r;
|
||
|
||
// Place the third circle.
|
||
place(b, a, c = circles[2]);
|
||
|
||
// Initialize the front-chain using the first three circles a, b and c.
|
||
a = new Node(a), b = new Node(b), c = new Node(c);
|
||
a.next = c.previous = b;
|
||
b.next = a.previous = c;
|
||
c.next = b.previous = a;
|
||
|
||
// Attempt to place each remaining circle…
|
||
pack: for (i = 3; i < n; ++i) {
|
||
place(a._, b._, c = circles[i]), c = new Node(c);
|
||
|
||
// Find the closest intersecting circle on the front-chain, if any.
|
||
// “Closeness” is determined by linear distance along the front-chain.
|
||
// “Ahead” or “behind” is likewise determined by linear distance.
|
||
j = b.next, k = a.previous, sj = b._.r, sk = a._.r;
|
||
do {
|
||
if (sj <= sk) {
|
||
if (intersects(j._, c._)) {
|
||
b = j, a.next = b, b.previous = a, --i;
|
||
continue pack;
|
||
}
|
||
sj += j._.r, j = j.next;
|
||
} else {
|
||
if (intersects(k._, c._)) {
|
||
a = k, a.next = b, b.previous = a, --i;
|
||
continue pack;
|
||
}
|
||
sk += k._.r, k = k.previous;
|
||
}
|
||
} while (j !== k.next);
|
||
|
||
// Success! Insert the new circle c between a and b.
|
||
c.previous = a, c.next = b, a.next = b.previous = b = c;
|
||
|
||
// Compute the new closest circle pair to the centroid.
|
||
aa = score(a);
|
||
while ((c = c.next) !== b) {
|
||
if ((ca = score(c)) < aa) {
|
||
a = c, aa = ca;
|
||
}
|
||
}
|
||
b = a.next;
|
||
}
|
||
|
||
// Compute the enclosing circle of the front chain.
|
||
a = [b._], c = b; while ((c = c.next) !== b) a.push(c._); c = packEncloseRandom(a, random);
|
||
|
||
// Translate the circles to put the enclosing circle around the origin.
|
||
for (i = 0; i < n; ++i) a = circles[i], a.x -= c.x, a.y -= c.y;
|
||
|
||
return c.r;
|
||
}
|
||
|
||
function siblings(circles) {
|
||
packSiblingsRandom(circles, lcg());
|
||
return circles;
|
||
}
|
||
|
||
function defaultRadius(d) {
|
||
return Math.sqrt(d.value);
|
||
}
|
||
|
||
function index$1() {
|
||
var radius = null,
|
||
dx = 1,
|
||
dy = 1,
|
||
padding = constantZero;
|
||
|
||
function pack(root) {
|
||
const random = lcg();
|
||
root.x = dx / 2, root.y = dy / 2;
|
||
if (radius) {
|
||
root.eachBefore(radiusLeaf(radius))
|
||
.eachAfter(packChildrenRandom(padding, 0.5, random))
|
||
.eachBefore(translateChild(1));
|
||
} else {
|
||
root.eachBefore(radiusLeaf(defaultRadius))
|
||
.eachAfter(packChildrenRandom(constantZero, 1, random))
|
||
.eachAfter(packChildrenRandom(padding, root.r / Math.min(dx, dy), random))
|
||
.eachBefore(translateChild(Math.min(dx, dy) / (2 * root.r)));
|
||
}
|
||
return root;
|
||
}
|
||
|
||
pack.radius = function(x) {
|
||
return arguments.length ? (radius = optional(x), pack) : radius;
|
||
};
|
||
|
||
pack.size = function(x) {
|
||
return arguments.length ? (dx = +x[0], dy = +x[1], pack) : [dx, dy];
|
||
};
|
||
|
||
pack.padding = function(x) {
|
||
return arguments.length ? (padding = typeof x === "function" ? x : constant(+x), pack) : padding;
|
||
};
|
||
|
||
return pack;
|
||
}
|
||
|
||
function radiusLeaf(radius) {
|
||
return function(node) {
|
||
if (!node.children) {
|
||
node.r = Math.max(0, +radius(node) || 0);
|
||
}
|
||
};
|
||
}
|
||
|
||
function packChildrenRandom(padding, k, random) {
|
||
return function(node) {
|
||
if (children = node.children) {
|
||
var children,
|
||
i,
|
||
n = children.length,
|
||
r = padding(node) * k || 0,
|
||
e;
|
||
|
||
if (r) for (i = 0; i < n; ++i) children[i].r += r;
|
||
e = packSiblingsRandom(children, random);
|
||
if (r) for (i = 0; i < n; ++i) children[i].r -= r;
|
||
node.r = e + r;
|
||
}
|
||
};
|
||
}
|
||
|
||
function translateChild(k) {
|
||
return function(node) {
|
||
var parent = node.parent;
|
||
node.r *= k;
|
||
if (parent) {
|
||
node.x = parent.x + k * node.x;
|
||
node.y = parent.y + k * node.y;
|
||
}
|
||
};
|
||
}
|
||
|
||
function roundNode(node) {
|
||
node.x0 = Math.round(node.x0);
|
||
node.y0 = Math.round(node.y0);
|
||
node.x1 = Math.round(node.x1);
|
||
node.y1 = Math.round(node.y1);
|
||
}
|
||
|
||
function treemapDice(parent, x0, y0, x1, y1) {
|
||
var nodes = parent.children,
|
||
node,
|
||
i = -1,
|
||
n = nodes.length,
|
||
k = parent.value && (x1 - x0) / parent.value;
|
||
|
||
while (++i < n) {
|
||
node = nodes[i], node.y0 = y0, node.y1 = y1;
|
||
node.x0 = x0, node.x1 = x0 += node.value * k;
|
||
}
|
||
}
|
||
|
||
function partition() {
|
||
var dx = 1,
|
||
dy = 1,
|
||
padding = 0,
|
||
round = false;
|
||
|
||
function partition(root) {
|
||
var n = root.height + 1;
|
||
root.x0 =
|
||
root.y0 = padding;
|
||
root.x1 = dx;
|
||
root.y1 = dy / n;
|
||
root.eachBefore(positionNode(dy, n));
|
||
if (round) root.eachBefore(roundNode);
|
||
return root;
|
||
}
|
||
|
||
function positionNode(dy, n) {
|
||
return function(node) {
|
||
if (node.children) {
|
||
treemapDice(node, node.x0, dy * (node.depth + 1) / n, node.x1, dy * (node.depth + 2) / n);
|
||
}
|
||
var x0 = node.x0,
|
||
y0 = node.y0,
|
||
x1 = node.x1 - padding,
|
||
y1 = node.y1 - padding;
|
||
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
|
||
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
|
||
node.x0 = x0;
|
||
node.y0 = y0;
|
||
node.x1 = x1;
|
||
node.y1 = y1;
|
||
};
|
||
}
|
||
|
||
partition.round = function(x) {
|
||
return arguments.length ? (round = !!x, partition) : round;
|
||
};
|
||
|
||
partition.size = function(x) {
|
||
return arguments.length ? (dx = +x[0], dy = +x[1], partition) : [dx, dy];
|
||
};
|
||
|
||
partition.padding = function(x) {
|
||
return arguments.length ? (padding = +x, partition) : padding;
|
||
};
|
||
|
||
return partition;
|
||
}
|
||
|
||
var preroot = {depth: -1},
|
||
ambiguous = {},
|
||
imputed = {};
|
||
|
||
function defaultId(d) {
|
||
return d.id;
|
||
}
|
||
|
||
function defaultParentId(d) {
|
||
return d.parentId;
|
||
}
|
||
|
||
function stratify() {
|
||
var id = defaultId,
|
||
parentId = defaultParentId,
|
||
path;
|
||
|
||
function stratify(data) {
|
||
var nodes = Array.from(data),
|
||
currentId = id,
|
||
currentParentId = parentId,
|
||
n,
|
||
d,
|
||
i,
|
||
root,
|
||
parent,
|
||
node,
|
||
nodeId,
|
||
nodeKey,
|
||
nodeByKey = new Map;
|
||
|
||
if (path != null) {
|
||
const I = nodes.map((d, i) => normalize(path(d, i, data)));
|
||
const P = I.map(parentof);
|
||
const S = new Set(I).add("");
|
||
for (const i of P) {
|
||
if (!S.has(i)) {
|
||
S.add(i);
|
||
I.push(i);
|
||
P.push(parentof(i));
|
||
nodes.push(imputed);
|
||
}
|
||
}
|
||
currentId = (_, i) => I[i];
|
||
currentParentId = (_, i) => P[i];
|
||
}
|
||
|
||
for (i = 0, n = nodes.length; i < n; ++i) {
|
||
d = nodes[i], node = nodes[i] = new Node$1(d);
|
||
if ((nodeId = currentId(d, i, data)) != null && (nodeId += "")) {
|
||
nodeKey = node.id = nodeId;
|
||
nodeByKey.set(nodeKey, nodeByKey.has(nodeKey) ? ambiguous : node);
|
||
}
|
||
if ((nodeId = currentParentId(d, i, data)) != null && (nodeId += "")) {
|
||
node.parent = nodeId;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
node = nodes[i];
|
||
if (nodeId = node.parent) {
|
||
parent = nodeByKey.get(nodeId);
|
||
if (!parent) throw new Error("missing: " + nodeId);
|
||
if (parent === ambiguous) throw new Error("ambiguous: " + nodeId);
|
||
if (parent.children) parent.children.push(node);
|
||
else parent.children = [node];
|
||
node.parent = parent;
|
||
} else {
|
||
if (root) throw new Error("multiple roots");
|
||
root = node;
|
||
}
|
||
}
|
||
|
||
if (!root) throw new Error("no root");
|
||
|
||
// When imputing internal nodes, only introduce roots if needed.
|
||
// Then replace the imputed marker data with null.
|
||
if (path != null) {
|
||
while (root.data === imputed && root.children.length === 1) {
|
||
root = root.children[0], --n;
|
||
}
|
||
for (let i = nodes.length - 1; i >= 0; --i) {
|
||
node = nodes[i];
|
||
if (node.data !== imputed) break;
|
||
node.data = null;
|
||
}
|
||
}
|
||
|
||
root.parent = preroot;
|
||
root.eachBefore(function(node) { node.depth = node.parent.depth + 1; --n; }).eachBefore(computeHeight);
|
||
root.parent = null;
|
||
if (n > 0) throw new Error("cycle");
|
||
|
||
return root;
|
||
}
|
||
|
||
stratify.id = function(x) {
|
||
return arguments.length ? (id = optional(x), stratify) : id;
|
||
};
|
||
|
||
stratify.parentId = function(x) {
|
||
return arguments.length ? (parentId = optional(x), stratify) : parentId;
|
||
};
|
||
|
||
stratify.path = function(x) {
|
||
return arguments.length ? (path = optional(x), stratify) : path;
|
||
};
|
||
|
||
return stratify;
|
||
}
|
||
|
||
// To normalize a path, we coerce to a string, strip the trailing slash if any
|
||
// (as long as the trailing slash is not immediately preceded by another slash),
|
||
// and add leading slash if missing.
|
||
function normalize(path) {
|
||
path = `${path}`;
|
||
let i = path.length;
|
||
if (slash(path, i - 1) && !slash(path, i - 2)) path = path.slice(0, -1);
|
||
return path[0] === "/" ? path : `/${path}`;
|
||
}
|
||
|
||
// Walk backwards to find the first slash that is not the leading slash, e.g.:
|
||
// "/foo/bar" ⇥ "/foo", "/foo" ⇥ "/", "/" ↦ "". (The root is special-cased
|
||
// because the id of the root must be a truthy value.)
|
||
function parentof(path) {
|
||
let i = path.length;
|
||
if (i < 2) return "";
|
||
while (--i > 1) if (slash(path, i)) break;
|
||
return path.slice(0, i);
|
||
}
|
||
|
||
// Slashes can be escaped; to determine whether a slash is a path delimiter, we
|
||
// count the number of preceding backslashes escaping the forward slash: an odd
|
||
// number indicates an escaped forward slash.
|
||
function slash(path, i) {
|
||
if (path[i] === "/") {
|
||
let k = 0;
|
||
while (i > 0 && path[--i] === "\\") ++k;
|
||
if ((k & 1) === 0) return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
function defaultSeparation(a, b) {
|
||
return a.parent === b.parent ? 1 : 2;
|
||
}
|
||
|
||
// function radialSeparation(a, b) {
|
||
// return (a.parent === b.parent ? 1 : 2) / a.depth;
|
||
// }
|
||
|
||
// This function is used to traverse the left contour of a subtree (or
|
||
// subforest). It returns the successor of v on this contour. This successor is
|
||
// either given by the leftmost child of v or by the thread of v. The function
|
||
// returns null if and only if v is on the highest level of its subtree.
|
||
function nextLeft(v) {
|
||
var children = v.children;
|
||
return children ? children[0] : v.t;
|
||
}
|
||
|
||
// This function works analogously to nextLeft.
|
||
function nextRight(v) {
|
||
var children = v.children;
|
||
return children ? children[children.length - 1] : v.t;
|
||
}
|
||
|
||
// Shifts the current subtree rooted at w+. This is done by increasing
|
||
// prelim(w+) and mod(w+) by shift.
|
||
function moveSubtree(wm, wp, shift) {
|
||
var change = shift / (wp.i - wm.i);
|
||
wp.c -= change;
|
||
wp.s += shift;
|
||
wm.c += change;
|
||
wp.z += shift;
|
||
wp.m += shift;
|
||
}
|
||
|
||
// All other shifts, applied to the smaller subtrees between w- and w+, are
|
||
// performed by this function. To prepare the shifts, we have to adjust
|
||
// change(w+), shift(w+), and change(w-).
|
||
function executeShifts(v) {
|
||
var shift = 0,
|
||
change = 0,
|
||
children = v.children,
|
||
i = children.length,
|
||
w;
|
||
while (--i >= 0) {
|
||
w = children[i];
|
||
w.z += shift;
|
||
w.m += shift;
|
||
shift += w.s + (change += w.c);
|
||
}
|
||
}
|
||
|
||
// If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise,
|
||
// returns the specified (default) ancestor.
|
||
function nextAncestor(vim, v, ancestor) {
|
||
return vim.a.parent === v.parent ? vim.a : ancestor;
|
||
}
|
||
|
||
function TreeNode(node, i) {
|
||
this._ = node;
|
||
this.parent = null;
|
||
this.children = null;
|
||
this.A = null; // default ancestor
|
||
this.a = this; // ancestor
|
||
this.z = 0; // prelim
|
||
this.m = 0; // mod
|
||
this.c = 0; // change
|
||
this.s = 0; // shift
|
||
this.t = null; // thread
|
||
this.i = i; // number
|
||
}
|
||
|
||
TreeNode.prototype = Object.create(Node$1.prototype);
|
||
|
||
function treeRoot(root) {
|
||
var tree = new TreeNode(root, 0),
|
||
node,
|
||
nodes = [tree],
|
||
child,
|
||
children,
|
||
i,
|
||
n;
|
||
|
||
while (node = nodes.pop()) {
|
||
if (children = node._.children) {
|
||
node.children = new Array(n = children.length);
|
||
for (i = n - 1; i >= 0; --i) {
|
||
nodes.push(child = node.children[i] = new TreeNode(children[i], i));
|
||
child.parent = node;
|
||
}
|
||
}
|
||
}
|
||
|
||
(tree.parent = new TreeNode(null, 0)).children = [tree];
|
||
return tree;
|
||
}
|
||
|
||
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
|
||
function tree() {
|
||
var separation = defaultSeparation,
|
||
dx = 1,
|
||
dy = 1,
|
||
nodeSize = null;
|
||
|
||
function tree(root) {
|
||
var t = treeRoot(root);
|
||
|
||
// Compute the layout using Buchheim et al.’s algorithm.
|
||
t.eachAfter(firstWalk), t.parent.m = -t.z;
|
||
t.eachBefore(secondWalk);
|
||
|
||
// If a fixed node size is specified, scale x and y.
|
||
if (nodeSize) root.eachBefore(sizeNode);
|
||
|
||
// If a fixed tree size is specified, scale x and y based on the extent.
|
||
// Compute the left-most, right-most, and depth-most nodes for extents.
|
||
else {
|
||
var left = root,
|
||
right = root,
|
||
bottom = root;
|
||
root.eachBefore(function(node) {
|
||
if (node.x < left.x) left = node;
|
||
if (node.x > right.x) right = node;
|
||
if (node.depth > bottom.depth) bottom = node;
|
||
});
|
||
var s = left === right ? 1 : separation(left, right) / 2,
|
||
tx = s - left.x,
|
||
kx = dx / (right.x + s + tx),
|
||
ky = dy / (bottom.depth || 1);
|
||
root.eachBefore(function(node) {
|
||
node.x = (node.x + tx) * kx;
|
||
node.y = node.depth * ky;
|
||
});
|
||
}
|
||
|
||
return root;
|
||
}
|
||
|
||
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
|
||
// applied recursively to the children of v, as well as the function
|
||
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
|
||
// node v is placed to the midpoint of its outermost children.
|
||
function firstWalk(v) {
|
||
var children = v.children,
|
||
siblings = v.parent.children,
|
||
w = v.i ? siblings[v.i - 1] : null;
|
||
if (children) {
|
||
executeShifts(v);
|
||
var midpoint = (children[0].z + children[children.length - 1].z) / 2;
|
||
if (w) {
|
||
v.z = w.z + separation(v._, w._);
|
||
v.m = v.z - midpoint;
|
||
} else {
|
||
v.z = midpoint;
|
||
}
|
||
} else if (w) {
|
||
v.z = w.z + separation(v._, w._);
|
||
}
|
||
v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
|
||
}
|
||
|
||
// Computes all real x-coordinates by summing up the modifiers recursively.
|
||
function secondWalk(v) {
|
||
v._.x = v.z + v.parent.m;
|
||
v.m += v.parent.m;
|
||
}
|
||
|
||
// The core of the algorithm. Here, a new subtree is combined with the
|
||
// previous subtrees. Threads are used to traverse the inside and outside
|
||
// contours of the left and right subtree up to the highest common level. The
|
||
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
|
||
// superscript o means outside and i means inside, the subscript - means left
|
||
// subtree and + means right subtree. For summing up the modifiers along the
|
||
// contour, we use respective variables si+, si-, so-, and so+. Whenever two
|
||
// nodes of the inside contours conflict, we compute the left one of the
|
||
// greatest uncommon ancestors using the function ANCESTOR and call MOVE
|
||
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
|
||
// Finally, we add a new thread (if necessary).
|
||
function apportion(v, w, ancestor) {
|
||
if (w) {
|
||
var vip = v,
|
||
vop = v,
|
||
vim = w,
|
||
vom = vip.parent.children[0],
|
||
sip = vip.m,
|
||
sop = vop.m,
|
||
sim = vim.m,
|
||
som = vom.m,
|
||
shift;
|
||
while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) {
|
||
vom = nextLeft(vom);
|
||
vop = nextRight(vop);
|
||
vop.a = v;
|
||
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
|
||
if (shift > 0) {
|
||
moveSubtree(nextAncestor(vim, v, ancestor), v, shift);
|
||
sip += shift;
|
||
sop += shift;
|
||
}
|
||
sim += vim.m;
|
||
sip += vip.m;
|
||
som += vom.m;
|
||
sop += vop.m;
|
||
}
|
||
if (vim && !nextRight(vop)) {
|
||
vop.t = vim;
|
||
vop.m += sim - sop;
|
||
}
|
||
if (vip && !nextLeft(vom)) {
|
||
vom.t = vip;
|
||
vom.m += sip - som;
|
||
ancestor = v;
|
||
}
|
||
}
|
||
return ancestor;
|
||
}
|
||
|
||
function sizeNode(node) {
|
||
node.x *= dx;
|
||
node.y = node.depth * dy;
|
||
}
|
||
|
||
tree.separation = function(x) {
|
||
return arguments.length ? (separation = x, tree) : separation;
|
||
};
|
||
|
||
tree.size = function(x) {
|
||
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]);
|
||
};
|
||
|
||
tree.nodeSize = function(x) {
|
||
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null);
|
||
};
|
||
|
||
return tree;
|
||
}
|
||
|
||
function treemapSlice(parent, x0, y0, x1, y1) {
|
||
var nodes = parent.children,
|
||
node,
|
||
i = -1,
|
||
n = nodes.length,
|
||
k = parent.value && (y1 - y0) / parent.value;
|
||
|
||
while (++i < n) {
|
||
node = nodes[i], node.x0 = x0, node.x1 = x1;
|
||
node.y0 = y0, node.y1 = y0 += node.value * k;
|
||
}
|
||
}
|
||
|
||
var phi = (1 + Math.sqrt(5)) / 2;
|
||
|
||
function squarifyRatio(ratio, parent, x0, y0, x1, y1) {
|
||
var rows = [],
|
||
nodes = parent.children,
|
||
row,
|
||
nodeValue,
|
||
i0 = 0,
|
||
i1 = 0,
|
||
n = nodes.length,
|
||
dx, dy,
|
||
value = parent.value,
|
||
sumValue,
|
||
minValue,
|
||
maxValue,
|
||
newRatio,
|
||
minRatio,
|
||
alpha,
|
||
beta;
|
||
|
||
while (i0 < n) {
|
||
dx = x1 - x0, dy = y1 - y0;
|
||
|
||
// Find the next non-empty node.
|
||
do sumValue = nodes[i1++].value; while (!sumValue && i1 < n);
|
||
minValue = maxValue = sumValue;
|
||
alpha = Math.max(dy / dx, dx / dy) / (value * ratio);
|
||
beta = sumValue * sumValue * alpha;
|
||
minRatio = Math.max(maxValue / beta, beta / minValue);
|
||
|
||
// Keep adding nodes while the aspect ratio maintains or improves.
|
||
for (; i1 < n; ++i1) {
|
||
sumValue += nodeValue = nodes[i1].value;
|
||
if (nodeValue < minValue) minValue = nodeValue;
|
||
if (nodeValue > maxValue) maxValue = nodeValue;
|
||
beta = sumValue * sumValue * alpha;
|
||
newRatio = Math.max(maxValue / beta, beta / minValue);
|
||
if (newRatio > minRatio) { sumValue -= nodeValue; break; }
|
||
minRatio = newRatio;
|
||
}
|
||
|
||
// Position and record the row orientation.
|
||
rows.push(row = {value: sumValue, dice: dx < dy, children: nodes.slice(i0, i1)});
|
||
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += dy * sumValue / value : y1);
|
||
else treemapSlice(row, x0, y0, value ? x0 += dx * sumValue / value : x1, y1);
|
||
value -= sumValue, i0 = i1;
|
||
}
|
||
|
||
return rows;
|
||
}
|
||
|
||
var squarify = (function custom(ratio) {
|
||
|
||
function squarify(parent, x0, y0, x1, y1) {
|
||
squarifyRatio(ratio, parent, x0, y0, x1, y1);
|
||
}
|
||
|
||
squarify.ratio = function(x) {
|
||
return custom((x = +x) > 1 ? x : 1);
|
||
};
|
||
|
||
return squarify;
|
||
})(phi);
|
||
|
||
function index() {
|
||
var tile = squarify,
|
||
round = false,
|
||
dx = 1,
|
||
dy = 1,
|
||
paddingStack = [0],
|
||
paddingInner = constantZero,
|
||
paddingTop = constantZero,
|
||
paddingRight = constantZero,
|
||
paddingBottom = constantZero,
|
||
paddingLeft = constantZero;
|
||
|
||
function treemap(root) {
|
||
root.x0 =
|
||
root.y0 = 0;
|
||
root.x1 = dx;
|
||
root.y1 = dy;
|
||
root.eachBefore(positionNode);
|
||
paddingStack = [0];
|
||
if (round) root.eachBefore(roundNode);
|
||
return root;
|
||
}
|
||
|
||
function positionNode(node) {
|
||
var p = paddingStack[node.depth],
|
||
x0 = node.x0 + p,
|
||
y0 = node.y0 + p,
|
||
x1 = node.x1 - p,
|
||
y1 = node.y1 - p;
|
||
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
|
||
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
|
||
node.x0 = x0;
|
||
node.y0 = y0;
|
||
node.x1 = x1;
|
||
node.y1 = y1;
|
||
if (node.children) {
|
||
p = paddingStack[node.depth + 1] = paddingInner(node) / 2;
|
||
x0 += paddingLeft(node) - p;
|
||
y0 += paddingTop(node) - p;
|
||
x1 -= paddingRight(node) - p;
|
||
y1 -= paddingBottom(node) - p;
|
||
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
|
||
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
|
||
tile(node, x0, y0, x1, y1);
|
||
}
|
||
}
|
||
|
||
treemap.round = function(x) {
|
||
return arguments.length ? (round = !!x, treemap) : round;
|
||
};
|
||
|
||
treemap.size = function(x) {
|
||
return arguments.length ? (dx = +x[0], dy = +x[1], treemap) : [dx, dy];
|
||
};
|
||
|
||
treemap.tile = function(x) {
|
||
return arguments.length ? (tile = required(x), treemap) : tile;
|
||
};
|
||
|
||
treemap.padding = function(x) {
|
||
return arguments.length ? treemap.paddingInner(x).paddingOuter(x) : treemap.paddingInner();
|
||
};
|
||
|
||
treemap.paddingInner = function(x) {
|
||
return arguments.length ? (paddingInner = typeof x === "function" ? x : constant(+x), treemap) : paddingInner;
|
||
};
|
||
|
||
treemap.paddingOuter = function(x) {
|
||
return arguments.length ? treemap.paddingTop(x).paddingRight(x).paddingBottom(x).paddingLeft(x) : treemap.paddingTop();
|
||
};
|
||
|
||
treemap.paddingTop = function(x) {
|
||
return arguments.length ? (paddingTop = typeof x === "function" ? x : constant(+x), treemap) : paddingTop;
|
||
};
|
||
|
||
treemap.paddingRight = function(x) {
|
||
return arguments.length ? (paddingRight = typeof x === "function" ? x : constant(+x), treemap) : paddingRight;
|
||
};
|
||
|
||
treemap.paddingBottom = function(x) {
|
||
return arguments.length ? (paddingBottom = typeof x === "function" ? x : constant(+x), treemap) : paddingBottom;
|
||
};
|
||
|
||
treemap.paddingLeft = function(x) {
|
||
return arguments.length ? (paddingLeft = typeof x === "function" ? x : constant(+x), treemap) : paddingLeft;
|
||
};
|
||
|
||
return treemap;
|
||
}
|
||
|
||
function binary(parent, x0, y0, x1, y1) {
|
||
var nodes = parent.children,
|
||
i, n = nodes.length,
|
||
sum, sums = new Array(n + 1);
|
||
|
||
for (sums[0] = sum = i = 0; i < n; ++i) {
|
||
sums[i + 1] = sum += nodes[i].value;
|
||
}
|
||
|
||
partition(0, n, parent.value, x0, y0, x1, y1);
|
||
|
||
function partition(i, j, value, x0, y0, x1, y1) {
|
||
if (i >= j - 1) {
|
||
var node = nodes[i];
|
||
node.x0 = x0, node.y0 = y0;
|
||
node.x1 = x1, node.y1 = y1;
|
||
return;
|
||
}
|
||
|
||
var valueOffset = sums[i],
|
||
valueTarget = (value / 2) + valueOffset,
|
||
k = i + 1,
|
||
hi = j - 1;
|
||
|
||
while (k < hi) {
|
||
var mid = k + hi >>> 1;
|
||
if (sums[mid] < valueTarget) k = mid + 1;
|
||
else hi = mid;
|
||
}
|
||
|
||
if ((valueTarget - sums[k - 1]) < (sums[k] - valueTarget) && i + 1 < k) --k;
|
||
|
||
var valueLeft = sums[k] - valueOffset,
|
||
valueRight = value - valueLeft;
|
||
|
||
if ((x1 - x0) > (y1 - y0)) {
|
||
var xk = value ? (x0 * valueRight + x1 * valueLeft) / value : x1;
|
||
partition(i, k, valueLeft, x0, y0, xk, y1);
|
||
partition(k, j, valueRight, xk, y0, x1, y1);
|
||
} else {
|
||
var yk = value ? (y0 * valueRight + y1 * valueLeft) / value : y1;
|
||
partition(i, k, valueLeft, x0, y0, x1, yk);
|
||
partition(k, j, valueRight, x0, yk, x1, y1);
|
||
}
|
||
}
|
||
}
|
||
|
||
function sliceDice(parent, x0, y0, x1, y1) {
|
||
(parent.depth & 1 ? treemapSlice : treemapDice)(parent, x0, y0, x1, y1);
|
||
}
|
||
|
||
var resquarify = (function custom(ratio) {
|
||
|
||
function resquarify(parent, x0, y0, x1, y1) {
|
||
if ((rows = parent._squarify) && (rows.ratio === ratio)) {
|
||
var rows,
|
||
row,
|
||
nodes,
|
||
i,
|
||
j = -1,
|
||
n,
|
||
m = rows.length,
|
||
value = parent.value;
|
||
|
||
while (++j < m) {
|
||
row = rows[j], nodes = row.children;
|
||
for (i = row.value = 0, n = nodes.length; i < n; ++i) row.value += nodes[i].value;
|
||
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += (y1 - y0) * row.value / value : y1);
|
||
else treemapSlice(row, x0, y0, value ? x0 += (x1 - x0) * row.value / value : x1, y1);
|
||
value -= row.value;
|
||
}
|
||
} else {
|
||
parent._squarify = rows = squarifyRatio(ratio, parent, x0, y0, x1, y1);
|
||
rows.ratio = ratio;
|
||
}
|
||
}
|
||
|
||
resquarify.ratio = function(x) {
|
||
return custom((x = +x) > 1 ? x : 1);
|
||
};
|
||
|
||
return resquarify;
|
||
})(phi);
|
||
|
||
exports.Node = Node$1;
|
||
exports.cluster = cluster;
|
||
exports.hierarchy = hierarchy;
|
||
exports.pack = index$1;
|
||
exports.packEnclose = enclose;
|
||
exports.packSiblings = siblings;
|
||
exports.partition = partition;
|
||
exports.stratify = stratify;
|
||
exports.tree = tree;
|
||
exports.treemap = index;
|
||
exports.treemapBinary = binary;
|
||
exports.treemapDice = treemapDice;
|
||
exports.treemapResquarify = resquarify;
|
||
exports.treemapSlice = treemapSlice;
|
||
exports.treemapSliceDice = sliceDice;
|
||
exports.treemapSquarify = squarify;
|
||
|
||
Object.defineProperty(exports, '__esModule', { value: true });
|
||
|
||
}));
|