site/node_modules/d3-hierarchy/src/tree.js
2024-10-14 08:09:33 +02:00

237 lines
6.9 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import {Node} from "./hierarchy/index.js";
function defaultSeparation(a, b) {
return a.parent === b.parent ? 1 : 2;
}
// function radialSeparation(a, b) {
// return (a.parent === b.parent ? 1 : 2) / a.depth;
// }
// This function is used to traverse the left contour of a subtree (or
// subforest). It returns the successor of v on this contour. This successor is
// either given by the leftmost child of v or by the thread of v. The function
// returns null if and only if v is on the highest level of its subtree.
function nextLeft(v) {
var children = v.children;
return children ? children[0] : v.t;
}
// This function works analogously to nextLeft.
function nextRight(v) {
var children = v.children;
return children ? children[children.length - 1] : v.t;
}
// Shifts the current subtree rooted at w+. This is done by increasing
// prelim(w+) and mod(w+) by shift.
function moveSubtree(wm, wp, shift) {
var change = shift / (wp.i - wm.i);
wp.c -= change;
wp.s += shift;
wm.c += change;
wp.z += shift;
wp.m += shift;
}
// All other shifts, applied to the smaller subtrees between w- and w+, are
// performed by this function. To prepare the shifts, we have to adjust
// change(w+), shift(w+), and change(w-).
function executeShifts(v) {
var shift = 0,
change = 0,
children = v.children,
i = children.length,
w;
while (--i >= 0) {
w = children[i];
w.z += shift;
w.m += shift;
shift += w.s + (change += w.c);
}
}
// If vi-s ancestor is a sibling of v, returns vi-s ancestor. Otherwise,
// returns the specified (default) ancestor.
function nextAncestor(vim, v, ancestor) {
return vim.a.parent === v.parent ? vim.a : ancestor;
}
function TreeNode(node, i) {
this._ = node;
this.parent = null;
this.children = null;
this.A = null; // default ancestor
this.a = this; // ancestor
this.z = 0; // prelim
this.m = 0; // mod
this.c = 0; // change
this.s = 0; // shift
this.t = null; // thread
this.i = i; // number
}
TreeNode.prototype = Object.create(Node.prototype);
function treeRoot(root) {
var tree = new TreeNode(root, 0),
node,
nodes = [tree],
child,
children,
i,
n;
while (node = nodes.pop()) {
if (children = node._.children) {
node.children = new Array(n = children.length);
for (i = n - 1; i >= 0; --i) {
nodes.push(child = node.children[i] = new TreeNode(children[i], i));
child.parent = node;
}
}
}
(tree.parent = new TreeNode(null, 0)).children = [tree];
return tree;
}
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
export default function() {
var separation = defaultSeparation,
dx = 1,
dy = 1,
nodeSize = null;
function tree(root) {
var t = treeRoot(root);
// Compute the layout using Buchheim et al.s algorithm.
t.eachAfter(firstWalk), t.parent.m = -t.z;
t.eachBefore(secondWalk);
// If a fixed node size is specified, scale x and y.
if (nodeSize) root.eachBefore(sizeNode);
// If a fixed tree size is specified, scale x and y based on the extent.
// Compute the left-most, right-most, and depth-most nodes for extents.
else {
var left = root,
right = root,
bottom = root;
root.eachBefore(function(node) {
if (node.x < left.x) left = node;
if (node.x > right.x) right = node;
if (node.depth > bottom.depth) bottom = node;
});
var s = left === right ? 1 : separation(left, right) / 2,
tx = s - left.x,
kx = dx / (right.x + s + tx),
ky = dy / (bottom.depth || 1);
root.eachBefore(function(node) {
node.x = (node.x + tx) * kx;
node.y = node.depth * ky;
});
}
return root;
}
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
// applied recursively to the children of v, as well as the function
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
// node v is placed to the midpoint of its outermost children.
function firstWalk(v) {
var children = v.children,
siblings = v.parent.children,
w = v.i ? siblings[v.i - 1] : null;
if (children) {
executeShifts(v);
var midpoint = (children[0].z + children[children.length - 1].z) / 2;
if (w) {
v.z = w.z + separation(v._, w._);
v.m = v.z - midpoint;
} else {
v.z = midpoint;
}
} else if (w) {
v.z = w.z + separation(v._, w._);
}
v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
}
// Computes all real x-coordinates by summing up the modifiers recursively.
function secondWalk(v) {
v._.x = v.z + v.parent.m;
v.m += v.parent.m;
}
// The core of the algorithm. Here, a new subtree is combined with the
// previous subtrees. Threads are used to traverse the inside and outside
// contours of the left and right subtree up to the highest common level. The
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
// superscript o means outside and i means inside, the subscript - means left
// subtree and + means right subtree. For summing up the modifiers along the
// contour, we use respective variables si+, si-, so-, and so+. Whenever two
// nodes of the inside contours conflict, we compute the left one of the
// greatest uncommon ancestors using the function ANCESTOR and call MOVE
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
// Finally, we add a new thread (if necessary).
function apportion(v, w, ancestor) {
if (w) {
var vip = v,
vop = v,
vim = w,
vom = vip.parent.children[0],
sip = vip.m,
sop = vop.m,
sim = vim.m,
som = vom.m,
shift;
while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) {
vom = nextLeft(vom);
vop = nextRight(vop);
vop.a = v;
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
if (shift > 0) {
moveSubtree(nextAncestor(vim, v, ancestor), v, shift);
sip += shift;
sop += shift;
}
sim += vim.m;
sip += vip.m;
som += vom.m;
sop += vop.m;
}
if (vim && !nextRight(vop)) {
vop.t = vim;
vop.m += sim - sop;
}
if (vip && !nextLeft(vom)) {
vom.t = vip;
vom.m += sip - som;
ancestor = v;
}
}
return ancestor;
}
function sizeNode(node) {
node.x *= dx;
node.y = node.depth * dy;
}
tree.separation = function(x) {
return arguments.length ? (separation = x, tree) : separation;
};
tree.size = function(x) {
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]);
};
tree.nodeSize = function(x) {
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null);
};
return tree;
}